These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 34115556)
1. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
2. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835 [TBL] [Abstract][Full Text] [Related]
3. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. Dan T; Jing H; Shen T; Zhu J; Liu Y Bioresour Technol; 2023 Oct; 385():129165. PubMed ID: 37182681 [TBL] [Abstract][Full Text] [Related]
4. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy. Zhao L; Zhang J; Xu Z; Cai S; Chen L; Cai T; Ji XM Bioresour Technol; 2022 Nov; 363():127939. PubMed ID: 36100183 [TBL] [Abstract][Full Text] [Related]
5. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
6. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38. Saraphirom P; Reungsang A; Plangklang P Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362 [TBL] [Abstract][Full Text] [Related]
7. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Kumar G; Ponnusamy VK; Bhosale RR; Shobana S; Yoon JJ; Bhatia SK; Rajesh Banu J; Kim SH Bioresour Technol; 2019 Sep; 287():121427. PubMed ID: 31104939 [TBL] [Abstract][Full Text] [Related]
9. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H; Meng H; Nie Z; Zhang M Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909 [TBL] [Abstract][Full Text] [Related]
10. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation. García-Depraect O; Lebrero R; Rodriguez-Vega S; Börner RA; Börner T; Muñoz R Bioresour Technol; 2022 Sep; 360():127655. PubMed ID: 35870672 [TBL] [Abstract][Full Text] [Related]
11. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. Khatami K; Perez-Zabaleta M; Cetecioglu Z J Environ Manage; 2022 Mar; 305():114337. PubMed ID: 34972045 [TBL] [Abstract][Full Text] [Related]
13. Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Sathiyanarayanan G; Kiran GS; Selvin J; Saibaba G Int J Biol Macromol; 2013 Sep; 60():253-61. PubMed ID: 23748002 [TBL] [Abstract][Full Text] [Related]
14. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
15. Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Szacherska K; Moraczewski K; Rytlewski P; Czaplicki S; Ciesielski S; Oleskowicz-Popiel P; Mozejko-Ciesielska J Sci Rep; 2022 May; 12(1):7263. PubMed ID: 35508573 [TBL] [Abstract][Full Text] [Related]
16. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Reddy MV; Mohan SV Bioresour Technol; 2012 Jan; 103(1):313-21. PubMed ID: 22055090 [TBL] [Abstract][Full Text] [Related]
17. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. Munir S; Jamil N J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110 [TBL] [Abstract][Full Text] [Related]
18. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium. Dhangdhariya JH; Dubey S; Trivedi HB; Pancha I; Bhatt JK; Dave BP; Mishra S Int J Biol Macromol; 2015 May; 76():254-61. PubMed ID: 25697675 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. He X; Yin J; Liu J; Chen T; Shen D Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828 [TBL] [Abstract][Full Text] [Related]
20. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. López-Cuellar MR; Alba-Flores J; Rodríguez JN; Pérez-Guevara F Int J Biol Macromol; 2011 Jan; 48(1):74-80. PubMed ID: 20933541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]