These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34115572)

  • 1. A computational study of suppression of sharp wave ripple complexes by controlling calcium and gap junctions in pyramidal cells.
    Mushtaq M; Haq RU; Anwar W; Marshall L; Bazhenov M; Zia K; Alam H; Hertel L; Awan AA; Martinetz T
    Bioengineered; 2021 Dec; 12(1):2603-2615. PubMed ID: 34115572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices.
    Ul Haq R; Liotta A; Kovacs R; Rösler A; Jarosch MJ; Heinemann U; Behrens CJ
    Hippocampus; 2012 Mar; 22(3):516-33. PubMed ID: 21254303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons.
    Traub RD; Bibbig A
    J Neurosci; 2000 Mar; 20(6):2086-93. PubMed ID: 10704482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of network activity and spatial reach of sharp wave-ripples.
    Canakci S; Toy MF; Inci AF; Liu X; Kuzum D
    PLoS One; 2017; 12(9):e0184542. PubMed ID: 28915251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.
    Behrens CJ; Ul Haq R; Liotta A; Anderson ML; Heinemann U
    Neuroscience; 2011 Sep; 192():11-9. PubMed ID: 21763755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study.
    Vladimirov N; Tu Y; Traub RD
    Eur J Neurosci; 2013 Nov; 38(10):3435-47. PubMed ID: 23992155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome.
    Cheah CS; Lundstrom BN; Catterall WA; Oakley JC
    J Neurosci; 2019 Nov; 39(46):9251-9260. PubMed ID: 31537705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices.
    Liotta A; Caliskan G; ul Haq R; Hollnagel JO; Rösler A; Heinemann U; Behrens CJ
    J Neurophysiol; 2011 Jan; 105(1):172-87. PubMed ID: 20881199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices.
    Maier N; Nimmrich V; Draguhn A
    J Physiol; 2003 Aug; 550(Pt 3):873-87. PubMed ID: 12807984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the GABA(A) receptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampus in vitro.
    Behrens CJ; van den Boom LP; Heinemann U
    Eur J Neurosci; 2007 Apr; 25(7):2170-81. PubMed ID: 17419756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A developmental increase of inhibition promotes the emergence of hippocampal ripples.
    Pochinok I; Stöber TM; Triesch J; Chini M; Hanganu-Opatz IL
    Nat Commun; 2024 Jan; 15(1):738. PubMed ID: 38272901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex.
    Zutshi I; Buzsáki G
    Curr Biol; 2023 Sep; 33(17):3648-3659.e4. PubMed ID: 37572665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic plasticity by antidromic firing during hippocampal network oscillations.
    Bukalo O; Campanac E; Hoffman DA; Fields RD
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5175-80. PubMed ID: 23479613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations.
    Traub RD; Schmitz D; Maier N; Whittington MA; Draguhn A
    Eur J Neurosci; 2012 Sep; 36(5):2650-60. PubMed ID: 22697272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin dependent masking of hippocampal sharp wave ripples.
    ul Haq R; Anderson ML; Hollnagel JO; Worschech F; Sherkheli MA; Behrens CJ; Heinemann U
    Neuropharmacology; 2016 Feb; 101():188-203. PubMed ID: 26409781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.