These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 34115843)
1. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Sun S; Jin C; Si J; Lei Y; Chen K; Cui Y; Liu Z; Liu J; Zhao M; Zhang X; Tang F; Rondina MT; Li Y; Wang QF Blood; 2021 Oct; 138(14):1211-1224. PubMed ID: 34115843 [TBL] [Abstract][Full Text] [Related]
2. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets. Matsubara Y; Ono Y; Suzuki H; Arai F; Suda T; Murata M; Ikeda Y PLoS One; 2013; 8(3):e58123. PubMed ID: 23469264 [TBL] [Abstract][Full Text] [Related]
4. Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production. Panuganti S; Schlinker AC; Lindholm PF; Papoutsakis ET; Miller WM Tissue Eng Part A; 2013 Apr; 19(7-8):998-1014. PubMed ID: 23190353 [TBL] [Abstract][Full Text] [Related]
5. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation. Mazharian A; Watson SP; Séverin S Exp Hematol; 2009 Oct; 37(10):1238-1249.e5. PubMed ID: 19619605 [TBL] [Abstract][Full Text] [Related]
6. Downregulation of hypoxia-inducible factor-1α contributes to impaired megakaryopoiesis in immune thrombocytopenia. Qi J; You T; Pan T; Wang Q; Zhu L; Han Y Thromb Haemost; 2017 Oct; 117(10):1875-1886. PubMed ID: 28771276 [TBL] [Abstract][Full Text] [Related]
7. CD41+/CD45+ cells without acetylcholinesterase activity are immature and a major megakaryocytic population in murine bone marrow. Matsumura-Takeda K; Sogo S; Isakari Y; Harada Y; Nishioka K; Kawakami T; Ono T; Taki T Stem Cells; 2007 Apr; 25(4):862-70. PubMed ID: 17420226 [TBL] [Abstract][Full Text] [Related]
8. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Geue S; Aurbach K; Manke MC; Manukjan G; Münzer P; Stegner D; Brähler C; Walker-Allgaier B; Märklin M; Borst CE; Quintanilla-Fend L; Rath D; Geisler T; Salih HR; Seizer P; Lang F; Nieswandt B; Gawaz M; Schulze H; Pleines I; Borst O Blood; 2019 Nov; 134(21):1847-1858. PubMed ID: 31578203 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 infection modifies the transcriptome of the megakaryocytes in the bone marrow. Allaeys I; Lemaire G; Leclercq M; Lacasse E; Fleury M; Dubuc I; Gudimard L; Puhm F; Tilburg J; Stone A; Machlus KR; Droit A; Flamand L; Boilard E Blood Adv; 2024 Jun; 8(11):2777-2789. PubMed ID: 38522092 [TBL] [Abstract][Full Text] [Related]
11. Rapamycin and bafilomycin A1 alter autophagy and megakaryopoiesis. Wang Q; You T; Fan H; Wang Y; Chu T; Poncz M; Zhu L Platelets; 2017 Jan; 28(1):82-89. PubMed ID: 27534900 [TBL] [Abstract][Full Text] [Related]
12. CXCR4 Wang J; Xie J; Wang D; Han X; Chen M; Shi G; Jiang L; Zhao M Elife; 2022 Jul; 11():. PubMed ID: 35904250 [TBL] [Abstract][Full Text] [Related]
13. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Stegner D; vanEeuwijk JMM; Angay O; Gorelashvili MG; Semeniak D; Pinnecker J; Schmithausen P; Meyer I; Friedrich M; Dütting S; Brede C; Beilhack A; Schulze H; Nieswandt B; Heinze KG Nat Commun; 2017 Jul; 8(1):127. PubMed ID: 28743899 [TBL] [Abstract][Full Text] [Related]
14. Abnormal megakaryopoiesis and platelet function in cyclooxygenase-2-deficient mice. Barbieri SS; Petrucci G; Tarantino E; Amadio P; Rocca B; Pesce M; Machlus KR; Ranelletti FO; Gianellini S; Weksler B; Italiano JE; Tremoli E Thromb Haemost; 2015 Nov; 114(6):1218-29. PubMed ID: 26272103 [TBL] [Abstract][Full Text] [Related]
15. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Huang J; Huang S; Ma Z; Lin X; Li X; Huang X; Wang J; Ye W; Li Y; He D; Yang M; Pan J; Ling Q; Li F; Mao S; Wang H; Wang Y; Jin J Thromb Haemost; 2021 Feb; 121(2):192-205. PubMed ID: 32961571 [TBL] [Abstract][Full Text] [Related]
16. Dynamic visualization of thrombopoiesis within bone marrow. Junt T; Schulze H; Chen Z; Massberg S; Goerge T; Krueger A; Wagner DD; Graf T; Italiano JE; Shivdasani RA; von Andrian UH Science; 2007 Sep; 317(5845):1767-70. PubMed ID: 17885137 [TBL] [Abstract][Full Text] [Related]
17. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Mattia G; Vulcano F; Milazzo L; Barca A; Macioce G; Giampaolo A; Hassan HJ Blood; 2002 Feb; 99(3):888-97. PubMed ID: 11806991 [TBL] [Abstract][Full Text] [Related]
18. Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Raslova H; Baccini V; Loussaief L; Comba B; Larghero J; Debili N; Vainchenker W Blood; 2006 Mar; 107(6):2303-10. PubMed ID: 16282343 [TBL] [Abstract][Full Text] [Related]
19. In vitro large scale production of megakaryocytes to functional platelets from human hematopoietic stem cells. Kumar PS; Chandrasekhar C; Srikanth L; Sarma PVGK Biochem Biophys Res Commun; 2018 Oct; 505(1):168-175. PubMed ID: 30243726 [TBL] [Abstract][Full Text] [Related]
20. Lactoferrin inhibits platelet production from human megakaryocytes in vitro. Matsumura-Takeda K; Ishida T; Sogo S; Isakari Y; Taki T; Sudo T; Kiwada H Biol Pharm Bull; 2008 Apr; 31(4):569-73. PubMed ID: 18379042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]