These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 34115950)

  • 1. SC1: A Tool for Interactive Web-Based Single-Cell RNA-Seq Data Analysis.
    Moussa M; Măndoiu II
    J Comput Biol; 2021 Aug; 28(8):820-841. PubMed ID: 34115950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scRNA-Explorer: An End-user Online Tool for Single Cell RNA-seq Data Analysis Featuring Gene Correlation and Data Filtering.
    Baltsavia I; Oulas A; Theodosiou T; Lavigne MD; Andreakos E; Mavrothalassitis G; Iliopoulos I
    J Mol Biol; 2024 Sep; 436(17):168654. PubMed ID: 39237193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IRIS-EDA: An integrated RNA-Seq interpretation system for gene expression data analysis.
    Monier B; McDermaid A; Wang C; Zhao J; Miller A; Fennell A; Ma Q
    PLoS Comput Biol; 2019 Feb; 15(2):e1006792. PubMed ID: 30763315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell RNA-seq data clustering using TF-IDF based methods.
    Moussa M; Măndoiu II
    BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WASP: a versatile, web-accessible single cell RNA-Seq processing platform.
    Hoek A; Maibach K; Özmen E; Vazquez-Armendariz AI; Mengel JP; Hain T; Herold S; Goesmann A
    BMC Genomics; 2021 Mar; 22(1):195. PubMed ID: 33736596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaoxia: a web-based interactive analysis platform for single cell RNA sequencing data.
    Wei W; Xia X; Li T; Chen Q; Feng X
    BMC Genomics; 2024 Apr; 25(1):402. PubMed ID: 38658838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guide to single-cell RNA sequencing analysis using web-based tools for non-bioinformatician.
    Yarlagadda S; Giorgio TD
    FEBS J; 2024 Jun; 291(12):2545-2561. PubMed ID: 38148322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists.
    Zhu X; Wolfgruber TK; Tasato A; Arisdakessian C; Garmire DG; Garmire LX
    Genome Med; 2017 Dec; 9(1):108. PubMed ID: 29202807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity.
    Xie J; Jeon H; Xin G; Ma Q; Chung D
    PLoS Comput Biol; 2023 Jul; 19(7):e1011300. PubMed ID: 37428794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ascend: R package for analysis of single-cell RNA-seq data.
    Senabouth A; Lukowski SW; Hernandez JA; Andersen SB; Mei X; Nguyen QH; Powell JE
    Gigascience; 2019 Aug; 8(8):. PubMed ID: 31505654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical downstream analysis steps for single-cell RNA sequencing data.
    Zhang Z; Cui F; Lin C; Zhao L; Wang C; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.