These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34116077)

  • 1. Locomotion is impacted differently according to the perinatal brain injury model: Meta-analysis of preclinical studies with implications for cerebral palsy.
    da Conceição Pereira S; Manhães-de-Castro R; Visco DB; de Albuquerque GL; da Silva Calado CMS; da Silva Souza V; Toscano AE
    J Neurosci Methods; 2021 Aug; 360():109250. PubMed ID: 34116077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fetal exposure to lipopolysaccharide, perinatal anoxia and sensorimotor restriction on motor skills and musculoskeletal tissue: implications for an animal model of cerebral palsy.
    Stigger F; Felizzola AL; Kronbauer GA; Couto GK; Achaval M; Marcuzzo S
    Exp Neurol; 2011 Apr; 228(2):183-91. PubMed ID: 21237156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic advances for treating memory impairments in perinatal brain injuries with implications for cerebral palsy: a systematic review and meta-analysis of preclinical studies.
    Calado CMSDS; Manhães-de-Castro R; Pereira SDC; da Silva Souza V; Visco DB; de Silveira BS; de Souza SL; Toscano AE
    Exp Neurol; 2023 Jul; 365():114411. PubMed ID: 37068620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants.
    Girard S; Kadhim H; Beaudet N; Sarret P; Sébire G
    Neuroscience; 2009 Jan; 158(2):673-82. PubMed ID: 19010395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time- and sex-dependent efficacy of magnesium sulfate to prevent behavioral impairments and cerebral damage in a mouse model of cerebral palsy.
    Daher I; Le Dieu-Lugon B; Lecointre M; Dupré N; Voisin C; Leroux P; Dourmap N; Gonzalez BJ; Marret S; Leroux-Nicollet I; Cleren C
    Neurobiol Dis; 2018 Dec; 120():151-164. PubMed ID: 30201311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia.
    Stigger F; Lovatel G; Marques M; Bertoldi K; Moysés F; Elsner V; Siqueira IR; Achaval M; Marcuzzo S
    Int J Dev Neurosci; 2013 Dec; 31(8):820-7. PubMed ID: 24140242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy.
    Pereira SDC; Benoit B; de Aguiar Junior FCA; Chanon S; Vieille-Marchiset A; Pesenti S; Ruzzin J; Vidal H; Toscano AE
    J Cachexia Sarcopenia Muscle; 2021 Dec; 12(6):2122-2133. PubMed ID: 34704398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphofunctional characteristics of skeletal muscle in rats with cerebral palsy.
    Buratti P; Covatti C; Centenaro LA; Brancalhão RMC; Torrejais MM
    Int J Exp Pathol; 2019 Feb; 100(1):49-59. PubMed ID: 30773727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy?
    Derrick M; Luo NL; Bregman JC; Jilling T; Ji X; Fisher K; Gladson CL; Beardsley DJ; Murdoch G; Back SA; Tan S
    J Neurosci; 2004 Jan; 24(1):24-34. PubMed ID: 14715934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia.
    Delcour M; Russier M; Xin DL; Massicotte VS; Barbe MF; Coq JO
    Int J Dev Neurosci; 2011 Oct; 29(6):593-607. PubMed ID: 21382470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early neurodevelopmental reflex impairments in a rodent model of cerebral palsy.
    Ho D; Sanches EF; Sizonenko SV
    Int J Dev Neurosci; 2022 Dec; 82(8):815-823. PubMed ID: 36301707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy.
    Silva KO; Pereira Sda C; Portovedo M; Milanski M; Galindo LC; Guzmán-Quevedo O; Manhães-de-Castro R; Toscano AE
    Int J Dev Neurosci; 2016 Aug; 52():38-45. PubMed ID: 27211347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia.
    Savard A; Brochu ME; Chevin M; Guiraut C; Grbic D; Sébire G
    J Neuroinflammation; 2015 May; 12():111. PubMed ID: 26025257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early intensive rehabilitation reverses locomotor disruption, decrease brain inflammation and induces neuroplasticity following experimental Cerebral Palsy.
    Sanches E; Ho D; van de Looij Y; Aebi Toulotte A; Baud L; Bouteldja F; Barraud Q; Araneda R; Bleyenheuft Y; Brochard S; Kathe C; Courtine G; Sizonenko S
    Brain Behav Immun; 2024 Oct; 121():303-316. PubMed ID: 39098438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oro-facial functions in experimental models of cerebral palsy: a systematic review.
    Lacerda DC; Ferraz-Pereira KN; Bezerra de Morais AT; Costa-de-Santana BJ; Quevedo OG; Manhães-de-Castro R; Toscano AE
    J Oral Rehabil; 2017 Apr; 44(4):251-260. PubMed ID: 28160523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic review of neurogenesis in animal models of early brain damage: Implications for cerebral palsy.
    Visco DB; Toscano AE; Juárez PAR; Gouveia HJCB; Guzman-Quevedo O; Torner L; Manhães-de-Castro R
    Exp Neurol; 2021 Jun; 340():113643. PubMed ID: 33631199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From cerebral palsy to developmental coordination disorder: Development of preclinical rat models corresponding to recent epidemiological changes.
    Coq JO; Kochmann M; Lacerda DC; Khalki H; Delcour M; Toscano AE; Cayetanot F; Canu MH; Barbe MF; Tsuji M
    Ann Phys Rehabil Med; 2020 Oct; 63(5):422-430. PubMed ID: 31756523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice?
    Fragopoulou AF; Qian Y; Heijtz RD; Forssberg H
    Mol Neurobiol; 2019 Oct; 56(10):6883-6900. PubMed ID: 30941732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No phenotype associated with established lipopolysaccharide model for cerebral palsy.
    Poggi SH; Park J; Toso L; Abebe D; Roberson R; Woodard JE; Spong CY
    Am J Obstet Gynecol; 2005 Mar; 192(3):727-33. PubMed ID: 15746664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of cerebral palsy in the perinatal rabbit.
    Tan S; Drobyshevsky A; Jilling T; Ji X; Ullman LM; Englof I; Derrick M
    J Child Neurol; 2005 Dec; 20(12):972-9. PubMed ID: 16417845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.