BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34116125)

  • 1. An atomic model for the human septin hexamer by cryo-EM.
    Mendonça DC; Guimarães SL; Pereira HD; Pinto AA; de Farias MA; de Godoy AS; Araujo APU; van Heel M; Portugal RV; Garratt RC
    J Mol Biol; 2021 Jul; 433(15):167096. PubMed ID: 34116125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A revised order of subunits in mammalian septin complexes.
    Mendonça DC; Macedo JN; Guimarães SL; Barroso da Silva FL; Cassago A; Garratt RC; Portugal RV; Araujo APU
    Cytoskeleton (Hoboken); 2019 Sep; 76(9-10):457-466. PubMed ID: 31608568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Recognition at Septin Interfaces: The Switches Hold the Key.
    Rosa HVD; Leonardo DA; Brognara G; Brandão-Neto J; D'Muniz Pereira H; Araújo APU; Garratt RC
    J Mol Biol; 2020 Oct; 432(21):5784-5801. PubMed ID: 32910969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal.
    Serrão VH; Alessandro F; Caldas VE; Marçal RL; Pereira HD; Thiemann OH; Garratt RC
    FEBS Lett; 2011 Dec; 585(24):3868-73. PubMed ID: 22064074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical properties of Sept7, a unique septin required for filament formation.
    Zent E; Vetter I; Wittinghofer A
    Biol Chem; 2011 Aug; 392(8-9):791-7. PubMed ID: 21824007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae.
    Brausemann A; Gerhardt S; Schott AK; Einsle O; Große-Berkenbusch A; Johnsson N; Gronemeyer T
    J Struct Biol; 2016 Mar; 193(3):157-161. PubMed ID: 26780475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and analysis of a mammalian septin hetero-octamer complex.
    DeRose BT; Kelley RS; Ravi R; Kokona B; Beld J; Spiliotis ET; Padrick SB
    Cytoskeleton (Hoboken); 2020 Nov; 77(11):485-499. PubMed ID: 33185030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A key piece of the puzzle: The central tetramer of the Saccharomyces cerevisiae septin protofilament and its implications for self-assembly.
    Marques da Silva R; Christe Dos Reis Saladino G; Antonio Leonardo D; D'Muniz Pereira H; Andréa Sculaccio S; Paula Ulian Araujo A; Charles Garratt R
    J Struct Biol; 2023 Sep; 215(3):107983. PubMed ID: 37315820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the rules governing assembly order of mammalian septin complexes.
    Sellin ME; Sandblad L; Stenmark S; Gullberg M
    Mol Biol Cell; 2011 Sep; 22(17):3152-64. PubMed ID: 21737677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into filament formation by mammalian septins.
    Sirajuddin M; Farkasovsky M; Hauer F; Kühlmann D; Macara IG; Weyand M; Stark H; Wittinghofer A
    Nature; 2007 Sep; 449(7160):311-5. PubMed ID: 17637674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting SEPT7 and the slippage of β-strands in the septin family.
    Brognara G; Pereira HM; Brandão-Neto J; Araujo APU; Garratt RC
    J Struct Biol; 2019 Jul; 207(1):67-73. PubMed ID: 31009756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding.
    Zeraik AE; Staykova M; Fontes MG; Nemuraitė I; Quinlan R; Araújo AP; DeMarco R
    Biochimie; 2016 Dec; 131():96-105. PubMed ID: 27687162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revised subunit order of mammalian septin complexes explains their in vitro polymerization properties.
    Soroor F; Kim MS; Palander O; Balachandran Y; Collins RF; Benlekbir S; Rubinstein JL; Trimble WS
    Mol Biol Cell; 2021 Feb; 32(3):289-300. PubMed ID: 33263440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of septin 2, 6, and 7 complexes.
    Low C; Macara IG
    J Biol Chem; 2006 Oct; 281(41):30697-706. PubMed ID: 16914550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning it inside out: The organization of human septin heterooligomers.
    McMurray MA; Thorner J
    Cytoskeleton (Hoboken); 2019 Sep; 76(9-10):449-456. PubMed ID: 31614074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septin C-terminal domain interactions: implications for filament stability and assembly.
    de Almeida Marques I; Valadares NF; Garcia W; Damalio JC; Macedo JN; de Araújo AP; Botello CA; Andreu JM; Garratt RC
    Cell Biochem Biophys; 2012 Mar; 62(2):317-28. PubMed ID: 22001952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insight into bacterial entrapment by septin cage reconstitution.
    Lobato-Márquez D; Xu J; Güler GÖ; Ojiakor A; Pilhofer M; Mostowy S
    Nat Commun; 2021 Jul; 12(1):4511. PubMed ID: 34301939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of human septin interactions.
    Sandrock K; Bartsch I; Bläser S; Busse A; Busse E; Zieger B
    Biol Chem; 2011 Aug; 392(8-9):751-61. PubMed ID: 21767235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A draft of the human septin interactome.
    Nakahira M; Macedo JN; Seraphim TV; Cavalcante N; Souza TA; Damalio JC; Reyes LF; Assmann EM; Alborghetti MR; Garratt RC; Araujo AP; Zanchin NI; Barbosa JA; Kobarg J
    PLoS One; 2010 Nov; 5(11):e13799. PubMed ID: 21082023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEPT7-mediated regulation of Ca
    Deb BK; Hasan G
    Cytoskeleton (Hoboken); 2019 Jan; 76(1):104-114. PubMed ID: 30004181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.