These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34116133)
1. Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models. Hirte AU; Platscher M; Joyce T; Heit JJ; Tranvinh E; Federau C Magn Reson Imaging; 2021 Sep; 81():60-66. PubMed ID: 34116133 [TBL] [Abstract][Full Text] [Related]
2. Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images. Kazuhiro K; Werner RA; Toriumi F; Javadi MS; Pomper MG; Solnes LB; Verde F; Higuchi T; Rowe SP Tomography; 2018 Dec; 4(4):159-163. PubMed ID: 30588501 [TBL] [Abstract][Full Text] [Related]
3. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks. Ahmad B; Sun J; You Q; Palade V; Mao Z Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433 [TBL] [Abstract][Full Text] [Related]
4. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Johnson PM; Drangova M Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909 [TBL] [Abstract][Full Text] [Related]
5. Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images. Xu IRL; Van Booven DJ; Goberdhan S; Breto A; Porto J; Alhusseini M; Algohary A; Stoyanova R; Punnen S; Mahne A; Arora H J Pers Med; 2023 Mar; 13(3):. PubMed ID: 36983728 [TBL] [Abstract][Full Text] [Related]
7. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Celard P; Iglesias EL; Sorribes-Fdez JM; Romero R; Vieira AS; Borrajo L Neural Comput Appl; 2023; 35(3):2291-2323. PubMed ID: 36373133 [TBL] [Abstract][Full Text] [Related]
8. Generative chemistry: drug discovery with deep learning generative models. Bian Y; Xie XQ J Mol Model; 2021 Feb; 27(3):71. PubMed ID: 33543405 [TBL] [Abstract][Full Text] [Related]
9. Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review. Sorin V; Barash Y; Konen E; Klang E Acad Radiol; 2020 Aug; 27(8):1175-1185. PubMed ID: 32035758 [TBL] [Abstract][Full Text] [Related]
10. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000 [TBL] [Abstract][Full Text] [Related]
11. Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network-based data augmentation. Gao Y; Ghodrati V; Kalbasi A; Fu J; Ruan D; Cao M; Wang C; Eilber FC; Bernthal N; Bukata S; Dry SM; Nelson SD; Kamrava M; Lewis J; Low DA; Steinberg M; Hu P; Yang Y Med Phys; 2021 Jun; 48(6):3262-3372. PubMed ID: 33908045 [TBL] [Abstract][Full Text] [Related]
12. Retrospective correction of motion-affected MR images using deep learning frameworks. Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. Kebaili A; Lapuyade-Lahorgue J; Ruan S J Imaging; 2023 Apr; 9(4):. PubMed ID: 37103232 [TBL] [Abstract][Full Text] [Related]
14. A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL. Peng B; Huang X; Wang S; Jiang J Proc Int Conf Image Proc; 2019 Sep; 2019():4629-4633. PubMed ID: 33795977 [TBL] [Abstract][Full Text] [Related]
15. High-content image generation for drug discovery using generative adversarial networks. Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280 [TBL] [Abstract][Full Text] [Related]
16. Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images. Mao Y; Chen C; Wang Z; Cheng D; You P; Huang X; Zhang B; Zhao F Front Neurosci; 2022; 16():1058487. PubMed ID: 36452330 [TBL] [Abstract][Full Text] [Related]
17. Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study. Lee JH; Han IH; Kim DH; Yu S; Lee IS; Song YS; Joo S; Jin CB; Kim H J Korean Neurosurg Soc; 2020 May; 63(3):386-396. PubMed ID: 31931556 [TBL] [Abstract][Full Text] [Related]
18. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Galbusera F; Bassani T; Casaroli G; Gitto S; Zanchetta E; Costa F; Sconfienza LM Eur Radiol Exp; 2018 Oct; 2(1):29. PubMed ID: 30377873 [TBL] [Abstract][Full Text] [Related]
19. A Universal Intensity Standardization Method Based on a Many-to-One Weak-Paired Cycle Generative Adversarial Network for Magnetic Resonance Images. Gao Y; Liu Y; Wang Y; Shi Z; Yu J IEEE Trans Med Imaging; 2019 Sep; 38(9):2059-2069. PubMed ID: 30676951 [TBL] [Abstract][Full Text] [Related]
20. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation. Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]