BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 34116271)

  • 1. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review.
    Wu QY; Yang ZW; Du Y; Ouyang WY; Wang WL
    J Hazard Mater; 2021 Sep; 418():126327. PubMed ID: 34116271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O
    Bourgin M; Borowska E; Helbing J; Hollender J; Kaiser HP; Kienle C; McArdell CS; Simon E; von Gunten U
    Water Res; 2017 Oct; 122():234-245. PubMed ID: 28601791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O
    Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y
    Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation.
    Guo Y; Zhan J; Yu G; Wang Y
    Water Res; 2021 Apr; 194():116927. PubMed ID: 33618107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model.
    Guo Y; Wang H; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Oct; 142():383-395. PubMed ID: 29913384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of ozonation and O
    Lee W; Choi S; Kim H; Lee W; Lee M; Son H; Lee C; Cho M; Lee Y
    J Hazard Mater; 2023 Jul; 454():131436. PubMed ID: 37146328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent.
    Lee Y; Kovalova L; McArdell CS; von Gunten U
    Water Res; 2014 Nov; 64():134-148. PubMed ID: 25046377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors.
    Yang ZW; Wang WL; Lee MY; Wu QY; Guan YT
    Environ Pollut; 2022 Feb; 294():118626. PubMed ID: 34864102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products.
    Bourgin M; Beck B; Boehler M; Borowska E; Fleiner J; Salhi E; Teichler R; von Gunten U; Siegrist H; McArdell CS
    Water Res; 2018 Feb; 129():486-498. PubMed ID: 29190578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.
    Lee Y; Gerrity D; Lee M; Gamage S; Pisarenko A; Trenholm RA; Canonica S; Snyder SA; von Gunten U
    Environ Sci Technol; 2016 Apr; 50(7):3809-19. PubMed ID: 26909504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism.
    Asghar A; Lutze HV; Tuerk J; Schmidt TC
    J Hazard Mater; 2022 May; 429():128189. PubMed ID: 35077976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of plasmon-enhanced catalytic ozonation for the abatement of micropollutants in environmental matrices.
    Yang W; Wu T
    Water Res; 2022 Mar; 211():118072. PubMed ID: 35090740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the prediction of micropollutant elimination during bromide ion-containing industrial wastewater ozonation using the R
    Koo JW; Lee J; Nam SH; Kye H; Kim E; Kim H; Lee Y; Hwang TM
    Chemosphere; 2023 Oct; 338():139450. PubMed ID: 37451645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of ozonation and peroxone process for simultaneous control of micropollutants and bromate in wastewater.
    Phattarapattamawong S; Kaiser AM; Saracevic E; Schaar HP; Krampe J
    Water Sci Technol; 2018 May; 2017(2):404-411. PubMed ID: 29851392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysed ozonation for removal of an endocrine-disrupting compound using the O3/Fenton reagents system.
    Mansouri L; Sabelfeld M; Geissen SU; Bousselmi L
    Environ Technol; 2015; 36(13-16):1721-30. PubMed ID: 25609021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of hydrogen peroxide on bromate depression during seawater ozonation.
    Yu Y; Zhao Y; Wang H; Tao P; Zhang X; Shao M; Sun T
    Chemosphere; 2021 Oct; 280():130669. PubMed ID: 33940451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation and mineralization of ofloxacin by ozonation and peroxone (O
    Chen H; Wang J
    Chemosphere; 2021 Apr; 269():128775. PubMed ID: 33162160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity and competition in the chemical oxidation processes for a binary pharmaceutical system in treated sewage effluent.
    Farzaneh H; Loganathan K; Saththasivam J; McKay G
    Sci Total Environ; 2021 Apr; 765():142704. PubMed ID: 33071121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR; Sharpless CM; Linden KG; Suffet IH
    Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.