BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34116380)

  • 1. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles.
    Carmelo-Luna FJ; Mendoza-Wilson AM; Ramos-Clamont Montfort G; Lizardi-Mendoza J; Madera-Santana T; Lardizábal-Gutiérrez D; Quintana-Owen P
    Bioorg Med Chem; 2021 Jul; 42():116240. PubMed ID: 34116380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kafirin microparticle encapsulation of catechin and sorghum condensed tannins.
    Taylor J; Taylor JR; Belton PS; Minnaar A
    J Agric Food Chem; 2009 Aug; 57(16):7523-8. PubMed ID: 19642673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenolytic depolymerization of procyanidin polymers from hi-tannin sorghum bran.
    Li Z; Zeng J; Tong Z; Qi Y; Gu L
    Food Chem; 2015 Dec; 188():337-42. PubMed ID: 26041201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale.
    Bai R; Cui Y; Luo L; Yuan D; Wei Z; Yu W; Sun B
    Food Chem; 2019 Apr; 278():609-616. PubMed ID: 30583419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annulation approach to doubly linked (A-type) oligocatechins: syntheses of (+)-procyanidin A₂ and (+)-cinnamtannin B₁.
    Ito Y; Ohmori K; Suzuki K
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10129-33. PubMed ID: 25070773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the interaction mechanisms of procyanidin B1 and procyanidin B2 with protein tyrosine phosphatase-1B: Analysis by kinetics, spectroscopy methods and molecular docking.
    Li B; Fu R; Tan H; Zhang Y; Teng W; Li Z; Tian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119910. PubMed ID: 33992895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase.
    Cai X; Yu J; Xu L; Liu R; Yang J
    Food Chem; 2015 May; 174():291-8. PubMed ID: 25529683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of the structure-free radical scavenging relationship of procyanidins.
    Mendoza-Wilson AM; Castro-Arredondo SI; Balandrán-Quintana RR
    Food Chem; 2014 Oct; 161():155-61. PubMed ID: 24837934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approach for the synthesis and isolation of dimeric procyanidins.
    Köhler N; Wray V; Winterhalter P
    J Agric Food Chem; 2008 Jul; 56(13):5374-85. PubMed ID: 18540617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Procyanidins-Loaded Complex Coacervates for Improved Stability by Self-Crosslinking and Calcium Ions Chelation.
    Tie S; Zhang X; Wang H; Song Y; Tan M
    J Agric Food Chem; 2020 Mar; 68(10):3163-3170. PubMed ID: 32069043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First regiocontrolled synthesis of procyanidin B6, a catechin dimer with rare connectivity: a halo-capping strategy for formation of 4,6-interflavan bonds.
    Watanabe G; Ohmori K; Suzuki K
    Chem Commun (Camb); 2013 Jun; 49(45):5210-2. PubMed ID: 23625307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of proanthocyanidins. Part 1. The first oxidative formation of the interflavanyl bond in procyanidins.
    Achilonu MC; Bonnet SL; van der Westhuizen JH
    Org Lett; 2008 Sep; 10(17):3865-8. PubMed ID: 18680310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro study of antigrowth capacity and antiacid capacity on Sreptococcus sobrinus 6715 of sorghum procyanidin dimers.
    Huang M; Yu J; Tian J; Cai X; Liu R; Tang C
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):695-701. PubMed ID: 24816700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on interaction between human salivary α-amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis.
    Zhao L; Wang F; Lu Q; Liu R; Tian J; Huang Y
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1136-1141. PubMed ID: 30001600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory activity of synthesized acetylated Procyanidin B1 analogs against HeLa S3 cells proliferation.
    Okamoto S; Ishihara S; Okamoto T; Doi S; Harui K; Higashino Y; Kawasaki T; Nakajima N; Saito A
    Molecules; 2014 Feb; 19(2):1775-85. PubMed ID: 24500007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselective Synthesis of Procyanidin B6, A 4-6-Condensed (+)-Catechin Dimer, by Intramolecular Condensation.
    Higashino Y; Okamoto T; Mori K; Kawasaki T; Hamada M; Nakajima N; Saito A
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29346322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Responsive Core-Shell Microparticles Prepared by a Microfluidic Chip for the Encapsulation and Controlled Release of Procyanidins.
    Tie S; Su W; Zhang X; Chen Y; Zhao X; Tan M
    J Agric Food Chem; 2021 Feb; 69(5):1466-1477. PubMed ID: 33507744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins-gelatin-chitosan nanoparticles.
    Zou T; Percival SS; Cheng Q; Li Z; Rowe CA; Gu L
    Eur J Pharm Biopharm; 2012 Sep; 82(1):36-42. PubMed ID: 22641023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives.
    Cruz L; Fernandes VC; Araújo P; Mateus N; de Freitas V
    Food Chem; 2015 May; 174():480-6. PubMed ID: 25529709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content.
    Awika JM; Dykes L; Gu L; Rooney LW; Prior RL
    J Agric Food Chem; 2003 Aug; 51(18):5516-21. PubMed ID: 12926907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.