BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34116423)

  • 1. Measuring and modeling the motor system with machine learning.
    Hausmann SB; Vargas AM; Mathis A; Mathis MW
    Curr Opin Neurobiol; 2021 Oct; 70():11-23. PubMed ID: 34116423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation.
    Arac A
    Curr Neurol Neurosci Rep; 2020 Jun; 20(8):29. PubMed ID: 32542455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning and Deep Neural Network Architectures for 3D Motion Capture Datasets.
    Boyle A; Ross GB; Graham RB
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4827-4830. PubMed ID: 33019071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio.
    Bala PC; Eisenreich BR; Yoo SBM; Hayden BY; Park HS; Zimmermann J
    Nat Commun; 2020 Sep; 11(1):4560. PubMed ID: 32917899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Pose Estimation in Human Health and Performance across the Lifespan.
    Stenum J; Cherry-Allen KM; Pyles CO; Reetzke RD; Vignos MF; Roemmich RT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A markerless platform for ambulatory systems neuroscience.
    Silvernagel MP; Ling AS; Nuyujukian P;
    Sci Robot; 2021 Sep; 6(58):eabj7045. PubMed ID: 34516749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closing the Control Loop with Time-Variant Embedded Soft Sensors and Recurrent Neural Networks.
    George Thuruthel T; Gardner P; Iida F
    Soft Robot; 2022 Dec; 9(6):1167-1176. PubMed ID: 35446168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using deep neural networks for kinematic analysis: Challenges and opportunities.
    Cronin NJ
    J Biomech; 2021 Jun; 123():110460. PubMed ID: 34029787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks.
    Ismail Fawaz H; Forestier G; Weber J; Idoumghar L; Muller PA
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1611-1617. PubMed ID: 31363983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation.
    Remedios SM; Fischer SL
    J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks.
    Skublewska-Paszkowska M; Powroznik P; Lukasik E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golf Swing Segmentation from a Single IMU Using Machine Learning.
    Kim M; Park S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 16. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for perturbational single-cell omics.
    Ji Y; Lotfollahi M; Wolf FA; Theis FJ
    Cell Syst; 2021 Jun; 12(6):522-537. PubMed ID: 34139164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Face Blurring on Human Pose Estimation: Ensuring Subject Privacy for Medical and Occupational Health Applications.
    Jiang J; Skalli W; Siadat A; Gajny L
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
    Wouda FJ; Giuberti M; Bellusci G; Veltink PH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A learning-based markerless approach for full-body kinematics estimation in-natura from a single image.
    Drory A; Li H; Hartley R
    J Biomech; 2017 Apr; 55():1-10. PubMed ID: 28237186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.