These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34116514)

  • 1. Circular dichroism enhancement and dynamically adjustment in planar metal chiral split rings with graphene sheets arrays.
    Wang Y; Wang Q; Wang Q; Wang Y; Li Z; Lan X; Gao W; Han Q; Dong J
    Nanotechnology; 2021 Jul; 32(38):. PubMed ID: 34116514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures.
    Wang Y; Wang Q; Wang Q; Wang Y; Li Z; Lan X; Dong J; Gao W; Han Q; Zhang Z
    Opt Express; 2021 Mar; 29(6):8087-8097. PubMed ID: 33820261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure.
    Wang Y; Dong J; Wang Z; Zhou S; Wang Q; Han Q; Gao W; Ren K; Qi J
    Opt Express; 2019 Nov; 27(23):33869-33879. PubMed ID: 31878446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral graphene plasmonic Archimedes' spiral nanostructure with tunable circular dichroism and enhanced sensing performance.
    Zhou H; Su S; Ma H; Zhao Z; Lin Z; Qiu W; Qiu P; Huang B; Kan Q
    Opt Express; 2020 Oct; 28(21):31954-31966. PubMed ID: 33115159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.
    Govorov AO; Fan Z; Hernandez P; Slocik JM; Naik RR
    Nano Lett; 2010 Apr; 10(4):1374-82. PubMed ID: 20184381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement and Sensing Application of Ultra-Narrowband Circular Dichroism in the Chiral Nanostructures Based on Monolayer MoS
    Wang Y; Li Z; Peng Y; Lan X; Dong J; Gao W; Han Q; Qi J; Zhang Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1925-1933. PubMed ID: 36538828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers.
    Kong XT; Khosravi Khorashad L; Wang Z; Govorov AO
    Nano Lett; 2018 Mar; 18(3):2001-2008. PubMed ID: 29420903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable strong circular dichroism in a non-chiral metallic metasurface integrated with graphene.
    Ardakani AG; Moradi K
    Appl Opt; 2019 Aug; 58(23):6217-6221. PubMed ID: 31503762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced circular dichroism of plasmonic chiral system due to indirect coupling of two unaligned nanorods with metal film.
    Li Y; Bai Y; Zhang Z; Abudukelimu A; Ren Y; Muhammad I; Li Q; Zhang Z
    Appl Opt; 2021 Aug; 60(23):6742-6747. PubMed ID: 34613151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice.
    Ali H; Petronijevic E; Pellegrini G; Sibilia C; Andreani LC
    Opt Express; 2023 Apr; 31(9):14196-14211. PubMed ID: 37157289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification of chiroptical activity of chiral biomolecules by surface plasmons.
    Maoz BM; Chaikin Y; Tesler AB; Bar Elli O; Fan Z; Govorov AO; Markovich G
    Nano Lett; 2013 Mar; 13(3):1203-9. PubMed ID: 23409980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation.
    Huang Z; Yao K; Su G; Ma W; Li L; Liu Y; Zhan P; Wang Z
    Opt Lett; 2018 Jun; 43(11):2636-2639. PubMed ID: 29856381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Circular Dichroism in Chiral Gold Nanowire Dimers.
    Toffoli D; Medves M; Fronzoni G; Coccia E; Stener M; Sementa L; Fortunelli A
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable circular dichroism based on graphene-metal split ring resonators.
    Zhang Y; Liu H; Xu R; Qin Z; Teng C; Deng S; Chen M; Cheng Y; Deng H; Yang H; Qu S; Yuan L
    Opt Express; 2021 Jun; 29(13):21020-21030. PubMed ID: 34266177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.
    Hu L; Tian X; Huang Y; Fang L; Fang Y
    Nanoscale; 2016 Feb; 8(6):3720-8. PubMed ID: 26814829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures.
    Liu Y; Wang R; Zhang X
    Opt Express; 2014 Feb; 22(4):4357-70. PubMed ID: 24663759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod Arrays.
    Wang Y; Wen X; Qu Y; Wang L; Wan R; Zhang Z
    Opt Express; 2016 Jul; 24(15):16425-33. PubMed ID: 27464094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.