BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34116519)

  • 1. Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks.
    Nasifoglu H; Erogul O
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34116519
    [No Abstract]   [Full Text] [Related]  

  • 2. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
    Mashrur FR; Islam MS; Saha DK; Islam SMR; Moni MA
    Comput Biol Med; 2021 Jul; 134():104532. PubMed ID: 34102402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network.
    Niroshana SMI; Zhu X; Nakamura K; Chen W
    PLoS One; 2021; 16(4):e0250618. PubMed ID: 33901251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis.
    García-Vicente C; Gutiérrez-Tobal GC; Jiménez-García J; Martín-Montero A; Gozal D; Hornero R
    Comput Biol Med; 2023 Dec; 167():107628. PubMed ID: 37918264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram.
    Chang HY; Yeh CY; Lee CT; Lin CC
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network.
    Yeh CY; Chang HY; Hu JY; Lin CC
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of obstructive sleep apnea using ensemble of recurrence plot convolutional neural networks (RPCNNs) from polysomnography signals.
    Taghizadegan Y; Jafarnia Dabanloo N; Maghooli K; Sheikhani A
    Med Hypotheses; 2021 Sep; 154():110659. PubMed ID: 34399170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics.
    Byeon YH; Pan SB; Kwak KC
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of preceding sleep apnea using ECG spectrogram during CPAP titration night: A novel machine-learning and bag-of-features framework.
    Linh TTD; Trang NTH; Lin SY; Wu D; Liu WT; Hu CJ
    J Sleep Res; 2024 May; 33(3):e13991. PubMed ID: 37402610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Feature Automatic Extraction for Detecting Obstructive Sleep Apnea Based on Single-Lead Electrocardiography Signals.
    Zhou Y; Kang K
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network.
    Urtnasan E; Park JU; Joo EY; Lee KJ
    J Med Syst; 2018 Apr; 42(6):104. PubMed ID: 29687192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model.
    Zhang J; Tang Z; Gao J; Lin L; Liu Z; Wu H; Liu F; Yao R
    Comput Intell Neurosci; 2021; 2021():5594733. PubMed ID: 33859679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel proposed CNN-SVM architecture for ECG scalograms classification.
    Ozaltin O; Yeniay O
    Soft comput; 2023; 27(8):4639-4658. PubMed ID: 36536664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study.
    Mukherjee D; Dhar K; Schwenker F; Sarkar R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals.
    Sharma M; Agarwal S; Acharya UR
    Comput Biol Med; 2018 Sep; 100():100-113. PubMed ID: 29990643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal.
    Zarei A; Asl BM
    IEEE J Biomed Health Inform; 2019 May; 23(3):1011-1021. PubMed ID: 29993564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram.
    Urtnasan E; Park JU; Lee KJ
    Physiol Meas; 2018 Jun; 39(6):065003. PubMed ID: 29794342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform.
    Toma TI; Choi S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.