These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Mhuantong W; Charoensawan V; Kanokratana P; Tangphatsornruang S; Champreda V Biotechnol Biofuels; 2015; 8():16. PubMed ID: 25709713 [TBL] [Abstract][Full Text] [Related]
4. Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Bohra V; Dafale NA; Purohit HJ Arch Microbiol; 2019 Dec; 201(10):1385-1397. PubMed ID: 31338542 [TBL] [Abstract][Full Text] [Related]
5. Insights into the Lignocellulose-Degrading Enzyme System of Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973 [TBL] [Abstract][Full Text] [Related]
6. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Zhu N; Yang J; Ji L; Liu J; Yang Y; Yuan H Biotechnol Biofuels; 2016; 9():243. PubMed ID: 27833656 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Leadbeater DR; Oates NC; Bennett JP; Li Y; Dowle AA; Taylor JD; Alponti JS; Setchfield AT; Alessi AM; Helgason T; McQueen-Mason SJ; Bruce NC Microbiome; 2021 Feb; 9(1):48. PubMed ID: 33597033 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Gavande PV; Basak A; Sen S; Lepcha K; Murmu N; Rai V; Mazumdar D; Saha SP; Das V; Ghosh S Sci Rep; 2021 Feb; 11(1):3032. PubMed ID: 33542396 [TBL] [Abstract][Full Text] [Related]
9. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. Zhao Z; Liu H; Wang C; Xu JR BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity. Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE mSphere; 2017; 2(4):. PubMed ID: 28776044 [TBL] [Abstract][Full Text] [Related]
12. "Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system. Naas AE; Solden LM; Norbeck AD; Brewer H; Hagen LH; Heggenes IM; McHardy AC; Mackie RI; Paša-Tolić L; Arntzen MØ; Eijsink VGH; Koropatkin NM; Hess M; Wrighton KC; Pope PB Microbiome; 2018 Mar; 6(1):44. PubMed ID: 29490697 [TBL] [Abstract][Full Text] [Related]
13. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. Gong G; Zhou S; Luo R; Gesang Z; Suolang S BMC Microbiol; 2020 Oct; 20(1):302. PubMed ID: 33036549 [TBL] [Abstract][Full Text] [Related]
14. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing. Sime AM; Kifle BA; Woldesemayat AA; Gemeda MT BMC Microbiol; 2024 Aug; 24(1):285. PubMed ID: 39090559 [TBL] [Abstract][Full Text] [Related]
15. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Jose VL; More RP; Appoothy T; Arun AS Syst Appl Microbiol; 2017 Apr; 40(3):160-170. PubMed ID: 28284522 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Corrêa CL; Midorikawa GEO; Filho EXF; Noronha EF; Alves GSC; Togawa RC; Silva-Junior OB; Costa MMDC; Grynberg P; Miller RNG Front Bioeng Biotechnol; 2020; 8():564527. PubMed ID: 33123513 [TBL] [Abstract][Full Text] [Related]
17. Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria. Bombardi L; Salini A; Aulitto M; Zuliani L; Andreolli M; Bordoli P; Coltro A; Vitulo N; Zaccone C; Lampis S; Fusco S Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256164 [TBL] [Abstract][Full Text] [Related]
18. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the Transcriptome in Midorikawa GEO; Correa CL; Noronha EF; Filho EXF; Togawa RC; Costa MMDC; Silva-Junior OB; Grynberg P; Miller RNG Front Bioeng Biotechnol; 2018; 6():123. PubMed ID: 30280097 [TBL] [Abstract][Full Text] [Related]
20. Accelerated discovery of novel glycoside hydrolases using targeted functional profiling and selective pressure on the rumen microbiome. Neves ALA; Yu J; Suzuki Y; Baez-Magana M; Arutyunova E; O'Hara E; McAllister T; Ominski KH; Lemieux MJ; Guan LL Microbiome; 2021 Nov; 9(1):229. PubMed ID: 34814938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]