These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 34117057)

  • 1. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair.
    Chandramouly G; Zhao J; McDevitt S; Rusanov T; Hoang T; Borisonnik N; Treddinick T; Lopezcolorado FW; Kent T; Siddique LA; Mallon J; Huhn J; Shoda Z; Kashkina E; Brambati A; Stark JM; Chen XS; Pomerantz RT
    Sci Adv; 2021 Jun; 7(24):. PubMed ID: 34117057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.
    Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R
    J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase.
    Kasiviswanathan R; Copeland WC
    J Biol Chem; 2011 Sep; 286(36):31490-500. PubMed ID: 21778232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea.
    Lemor M; Kong Z; Henry E; Brizard R; Laurent S; Bossé A; Henneke G
    J Mol Biol; 2018 Dec; 430(24):4908-4924. PubMed ID: 30342933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template and primer requirements for DNA Pol θ-mediated end joining.
    He P; Yang W
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7747-7752. PubMed ID: 29987024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine.
    Sassa A; Çağlayan M; Rodriguez Y; Beard WA; Wilson SH; Nohmi T; Honma M; Yasui M
    J Biol Chem; 2016 Nov; 291(46):24314-24323. PubMed ID: 27660390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington's disease via insertion sequences of its catalytic domain.
    Chan KY; Li X; Ortega J; Gu L; Li GM
    J Biol Chem; 2021 Oct; 297(4):101144. PubMed ID: 34473992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The presence of ribonucleotides in DNA has an ambiguous impact on the maintenance of genetic stability].
    Łazowski K; Makiela-Dzbenska K
    Postepy Biochem; 2019 Jun; 65(2):143-152. PubMed ID: 31642653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a 'steric gate' residue for discrimination against ribonucleotides.
    DeLucia AM; Grindley ND; Joyce CM
    Nucleic Acids Res; 2003 Jul; 31(14):4129-37. PubMed ID: 12853630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining.
    Kent T; Mateos-Gomez PA; Sfeir A; Pomerantz RT
    Elife; 2016 Jun; 5():. PubMed ID: 27311885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerase mu is a DNA-directed DNA/RNA polymerase.
    Nick McElhinny SA; Ramsden DA
    Mol Cell Biol; 2003 Apr; 23(7):2309-15. PubMed ID: 12640116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of microhomology-mediated end-joining by purified full-length Polθ.
    Black SJ; Ozdemir AY; Kashkina E; Kent T; Rusanov T; Ristic D; Shin Y; Suma A; Hoang T; Chandramouly G; Siddique LA; Borisonnik N; Sullivan-Reed K; Mallon JS; Skorski T; Carnevale V; Murakami KS; Wyman C; Pomerantz RT
    Nat Commun; 2019 Sep; 10(1):4423. PubMed ID: 31562312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.
    Yoon JH; Roy Choudhury J; Park J; Prakash S; Prakash L
    J Biol Chem; 2017 Nov; 292(45):18682-18688. PubMed ID: 28939775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step enzymatic modification of RNA 3' termini using polymerase θ.
    Thomas C; Rusanov T; Hoang T; Augustin T; Kent T; Gaspar I; Pomerantz RT
    Nucleic Acids Res; 2019 Apr; 47(7):3272-3283. PubMed ID: 30818397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence for reconfiguration of DNA polymerase θ active site for error-free translesion synthesis in human cells.
    Yoon JH; Johnson RE; Prakash L; Prakash S
    J Biol Chem; 2020 May; 295(18):5918-5927. PubMed ID: 32169903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids.
    Ozdemir AY; Rusanov T; Kent T; Siddique LA; Pomerantz RT
    J Biol Chem; 2018 Apr; 293(14):5259-5269. PubMed ID: 29444826
    [No Abstract]   [Full Text] [Related]  

  • 18. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides.
    Göksenin AY; Zahurancik W; LeCompte KG; Taggart DJ; Suo Z; Pursell ZF
    J Biol Chem; 2012 Dec; 287(51):42675-84. PubMed ID: 23093410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ.
    Kent T; Chandramouly G; McDevitt SM; Ozdemir AY; Pomerantz RT
    Nat Struct Mol Biol; 2015 Mar; 22(3):230-7. PubMed ID: 25643323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass.
    Ordonez H; Shuman S
    Nucleic Acids Res; 2014 Nov; 42(20):12722-34. PubMed ID: 25352547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.