These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34117237)

  • 21. Observation of High Angular Momentum Excitons in Cuprous Oxide.
    Thewes J; Heckötter J; Kazimierczuk T; Aßmann M; Fröhlich D; Bayer M; Semina MA; Glazov MM
    Phys Rev Lett; 2015 Jul; 115(2):027402. PubMed ID: 26207502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topological Spin Phases of Trapped Rydberg Excitons in Cu_{2}O.
    Poddubny AN; Glazov MM
    Phys Rev Lett; 2019 Sep; 123(12):126801. PubMed ID: 31633959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures.
    Adnan M; Baumberg JJ; Vijaya Prakash G
    Sci Rep; 2020 Feb; 10(1):2615. PubMed ID: 32054972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signatures of Exciton Orbits in Quantum Mechanical Recurrence Spectra of Cu_{2}O.
    Ertl J; Marquardt M; Schumacher M; Rommel P; Main J; Bayer M
    Phys Rev Lett; 2022 Aug; 129(6):067401. PubMed ID: 36018667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rydberg Macrodimers: Diatomic Molecules on the Micrometer Scale.
    Hollerith S; Zeiher J
    J Phys Chem A; 2023 May; 127(18):3925-3939. PubMed ID: 36977279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luminescent Emission of Excited Rydberg Excitons from Monolayer WSe
    Chen SY; Lu Z; Goldstein T; Tong J; Chaves A; Kunstmann J; Cavalcante LSR; Woźniak T; Seifert G; Reichman DR; Taniguchi T; Watanabe K; Smirnov D; Yan J
    Nano Lett; 2019 Apr; 19(4):2464-2471. PubMed ID: 30860854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitons and Polarons in Organic Materials.
    Ghosh R; Spano FC
    Acc Chem Res; 2020 Oct; 53(10):2201-2211. PubMed ID: 33035054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Driven-Dissipative Rydberg Blockade in Optical Lattices.
    Kazemi J; Weimer H
    Phys Rev Lett; 2023 Apr; 130(16):163601. PubMed ID: 37154665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum memory with strong and controllable Rydberg-level interactions.
    Li L; Kuzmich A
    Nat Commun; 2016 Nov; 7():13618. PubMed ID: 27869195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation.
    Ziemkiewicz D; Zielińska-Raczyńska S
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exotic topological density waves in cold atomic Rydberg-dressed fermions.
    Li X; Sarma SD
    Nat Commun; 2015 May; 6():7137. PubMed ID: 25972134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Range Multibody Interactions and Three-Body Antiblockade in a Trapped Rydberg Ion Chain.
    Gambetta FM; Zhang C; Hennrich M; Lesanovsky I; Li W
    Phys Rev Lett; 2020 Sep; 125(13):133602. PubMed ID: 33034467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of Rydberg Blockade Induced by a Single Ion.
    Engel F; Dieterle T; Schmid T; Tomschitz C; Veit C; Zuber N; Löw R; Pfau T; Meinert F
    Phys Rev Lett; 2018 Nov; 121(19):193401. PubMed ID: 30468597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical description of electronically excited vinylidene up to 10 eV: first high level ab initio study of singlet valence and Rydberg states.
    Boyé-Péronne S; Gauyacq D; Liévin J
    J Chem Phys; 2014 Nov; 141(17):174317. PubMed ID: 25381524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction enhanced imaging of individual Rydberg atoms in dense gases.
    Günter G; Robert-de-Saint-Vincent M; Schempp H; Hofmann CS; Whitlock S; Weidemüller M
    Phys Rev Lett; 2012 Jan; 108(1):013002. PubMed ID: 22304259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting Mulliken's concepts about Rydberg states and Rydberg-valence interactions from large-scale Ab initio calculations on the acetylene molecule.
    Laruelle F; Boyé-Péronne S; Gauyacq D; Liévin J
    J Phys Chem A; 2009 Nov; 113(47):13210-20. PubMed ID: 19639976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen H2.
    Osterwalder A; Wüest A; Merkt F; Jungen Ch
    J Chem Phys; 2004 Dec; 121(23):11810-38. PubMed ID: 15634145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.