BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34117246)

  • 1. Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases.
    Lloréns-Rico V; Vieira-Silva S; Gonçalves PJ; Falony G; Raes J
    Nat Commun; 2021 Jun; 12(1):3562. PubMed ID: 34117246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in benchmarking metagenomic profilers.
    Sun Z; Huang S; Zhang M; Zhu Q; Haiminen N; Carrieri AP; Vázquez-Baeza Y; Parida L; Kim HC; Knight R; Liu YY
    Nat Methods; 2021 Jun; 18(6):618-626. PubMed ID: 33986544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEMMI: a continuous benchmarking platform for metagenomics classifiers.
    Seppey M; Manni M; Zdobnov EM
    Genome Res; 2020 Aug; 30(8):1208-1216. PubMed ID: 32616517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
    Staley C; Sadowsky MJ
    J Microbiol Methods; 2018 Nov; 154():14-18. PubMed ID: 30287354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Accurate and Quantitative Comparative Metagenomics.
    Nayfach S; Pollard KS
    Cell; 2016 Aug; 166(5):1103-1116. PubMed ID: 27565341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning methods in metagenomics: a review.
    Roy G; Prifti E; Belda E; Zucker JD
    Microb Genom; 2024 Apr; 10(4):. PubMed ID: 38630611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crowdsourced benchmarking of taxonomic metagenome profilers: lessons learned from the sbv IMPROVER Microbiomics challenge.
    Poussin C; Khachatryan L; Sierro N; Narsapuram VK; Meyer F; Kaikala V; Chawla V; Muppirala U; Kumar S; Belcastro V; Battey JND; Scotti E; Boué S; McHardy AC; Peitsch MC; Ivanov NV; Hoeng J
    BMC Genomics; 2022 Aug; 23(1):624. PubMed ID: 36042406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional data analysis of the microbiome: fundamentals, tools, and challenges.
    Tsilimigras MC; Fodor AA
    Ann Epidemiol; 2016 May; 26(5):330-5. PubMed ID: 27255738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAMISIM: simulating metagenomes and microbial communities.
    Fritz A; Hofmann P; Majda S; Dahms E; Dröge J; Fiedler J; Lesker TR; Belmann P; DeMaere MZ; Darling AE; Sczyrba A; Bremges A; McHardy AC
    Microbiome; 2019 Feb; 7(1):17. PubMed ID: 30736849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSMD: a computational subtraction-based microbiome discovery pipeline for species-level characterization of clinical metagenomic samples.
    Liu Y; Bible PW; Zou B; Liang Q; Dong C; Wen X; Li Y; Ge X; Li X; Deng X; Ma R; Guo S; Liang J; Chen T; Pan W; Liu L; Chen W; Wang X; Wei L
    Bioinformatics; 2020 Mar; 36(5):1577-1583. PubMed ID: 31626280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating differential abundance methods in microbiome data: A benchmark study.
    Cappellato M; Baruzzo G; Di Camillo B
    PLoS Comput Biol; 2022 Sep; 18(9):e1010467. PubMed ID: 36074761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical model for describing and simulating microbial community profiles.
    Ma S; Ren B; Mallick H; Moon YS; Schwager E; Maharjan S; Tickle TL; Lu Y; Carmody RN; Franzosa EA; Janson L; Huttenhower C
    PLoS Comput Biol; 2021 Sep; 17(9):e1008913. PubMed ID: 34516542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico benchmarking of metagenomic tools for coding sequence detection reveals the limits of sensitivity and precision.
    Golob JL; Minot SS
    BMC Bioinformatics; 2020 Oct; 21(1):459. PubMed ID: 33059593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microbiome reality check: limitations of in silico-based metagenomic approaches to study complex bacterial communities.
    Lugli GA; Milani C; Mancabelli L; Turroni F; van Sinderen D; Ventura M
    Environ Microbiol Rep; 2019 Dec; 11(6):840-847. PubMed ID: 31668006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data.
    Calgaro M; Romualdi C; Waldron L; Risso D; Vitulo N
    Genome Biol; 2020 Aug; 21(1):191. PubMed ID: 32746888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.
    Olson ND; Treangen TJ; Hill CM; Cepeda-Espinoza V; Ghurye J; Koren S; Pop M
    Brief Bioinform; 2019 Jul; 20(4):1140-1150. PubMed ID: 28968737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PanFP: pangenome-based functional profiles for microbial communities.
    Jun SR; Robeson MS; Hauser LJ; Schadt CW; Gorin AA
    BMC Res Notes; 2015 Sep; 8():479. PubMed ID: 26409790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.