These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34117253)
21. Phenological sequences: how early-season events define those that follow. Ettinger AK; Gee S; Wolkovich EM Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664 [TBL] [Abstract][Full Text] [Related]
22. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Mulder CP; Iles DT; Rockwell RF Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120 [TBL] [Abstract][Full Text] [Related]
23. Diminishing warming effects on plant phenology over time. Lu C; van Groenigen KJ; Gillespie MAK; Hollister RD; Post E; Cooper EJ; Welker JM; Huang Y; Min X; Chen J; Jónsdóttir IS; Mauritz M; Cannone N; Natali SM; Schuur E; Molau U; Yan T; Wang H; He JS; Liu H New Phytol; 2024 Aug; ():. PubMed ID: 39103987 [TBL] [Abstract][Full Text] [Related]
24. Environmental drivers of increased ecosystem respiration in a warming tundra. Maes SL; Dietrich J; Midolo G; Schwieger S; Kummu M; Vandvik V; Aerts R; Althuizen IHJ; Biasi C; Björk RG; Böhner H; Carbognani M; Chiari G; Christiansen CT; Clemmensen KE; Cooper EJ; Cornelissen JHC; Elberling B; Faubert P; Fetcher N; Forte TGW; Gaudard J; Gavazov K; Guan Z; Guðmundsson J; Gya R; Hallin S; Hansen BB; Haugum SV; He JS; Hicks Pries C; Hovenden MJ; Jalava M; Jónsdóttir IS; Juhanson J; Jung JY; Kaarlejärvi E; Kwon MJ; Lamprecht RE; Le Moullec M; Lee H; Marushchak ME; Michelsen A; Munir TM; Myrsky EM; Nielsen CS; Nyberg M; Olofsson J; Óskarsson H; Parker TC; Pedersen EP; Petit Bon M; Petraglia A; Raundrup K; Ravn NMR; Rinnan R; Rodenhizer H; Ryde I; Schmidt NM; Schuur EAG; Sjögersten S; Stark S; Strack M; Tang J; Tolvanen A; Töpper JP; Väisänen MK; van Logtestijn RSP; Voigt C; Walz J; Weedon JT; Yang Y; Ylänne H; Björkman MP; Sarneel JM; Dorrepaal E Nature; 2024 May; 629(8010):105-113. PubMed ID: 38632407 [TBL] [Abstract][Full Text] [Related]
25. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake. Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338 [TBL] [Abstract][Full Text] [Related]
29. Climate warming leads to advanced fruit development period of temperate woody species but divergent changes in its length. Ma Q; Hänninen H; Berninger F; Li X; Huang JG Glob Chang Biol; 2022 Oct; 28(20):6021-6032. PubMed ID: 35901248 [TBL] [Abstract][Full Text] [Related]
30. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Cornelius C; Estrella N; Franz H; Menzel A Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251 [TBL] [Abstract][Full Text] [Related]
31. Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis. Huang W; Dai J; Wang W; Li J; Feng C; Du J Int J Biometeorol; 2020 Nov; 64(11):1865-1876. PubMed ID: 32734424 [TBL] [Abstract][Full Text] [Related]
32. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? Speed JDM; Chimal-Ballesteros JA; Martin MD; Barrio IC; Vuorinen KEM; Soininen EM Glob Chang Biol; 2021 Dec; 27(24):6568-6577. PubMed ID: 34592044 [TBL] [Abstract][Full Text] [Related]
33. Experimental Warming Changes Phenology and Shortens Growing Season of the Dominant Invasive Plant Howell A; Winkler DE; Phillips ML; McNellis B; Reed SC Front Plant Sci; 2020; 11():570001. PubMed ID: 33178240 [No Abstract] [Full Text] [Related]
34. Nonlinear flowering responses to climate: are species approaching their limits of phenological change? Iler AM; Høye TT; Inouye DW; Schmidt NM Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120489. PubMed ID: 23836793 [TBL] [Abstract][Full Text] [Related]
35. Diminished response of arctic plants to warming over time. Kremers KS; Hollister RD; Oberbauer SF PLoS One; 2015; 10(3):e0116586. PubMed ID: 25767881 [TBL] [Abstract][Full Text] [Related]
36. Mycorrhizal status regulates plant phenological mismatch caused by warming. Wei W; Shi Z; Yuan M; Yang S; Gao J Sci Total Environ; 2024 Nov; 949():175117. PubMed ID: 39084389 [TBL] [Abstract][Full Text] [Related]
37. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons. Kolářová E; Nekovář J; Adamík P Int J Biometeorol; 2014 Oct; 58(8):1739-48. PubMed ID: 24389748 [TBL] [Abstract][Full Text] [Related]
38. Earlier flowering did not alter pollen limitation in an early flowering shrub under short-term experimental warming. Pan CC; Feng Q; Zhao HL; Liu LD; Li YL; Li YQ; Zhang TH; Yu XY Sci Rep; 2017 Jun; 7(1):2795. PubMed ID: 28584244 [TBL] [Abstract][Full Text] [Related]
39. Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Zohner CM; Renner SS Oecologia; 2019 Feb; 189(2):549-561. PubMed ID: 30684009 [TBL] [Abstract][Full Text] [Related]
40. Long-term changes in the daytime growing season carbon dioxide exchange following increased temperature and snow cover in arctic tundra. Hermesdorf L; Liu Y; Michelsen A; Westergaard-Nielsen A; Mortensen LH; Jepsen MS; Sigsgaard C; Elberling B Glob Chang Biol; 2024 Jan; 30(1):e17087. PubMed ID: 38273494 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]