These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34117706)
1. Effects of Conjugated Structure on the Magnesium Storage Performance of Dianhydrides. Yang H; Xu F Chemphyschem; 2021 Jul; 22(14):1455-1460. PubMed ID: 34117706 [TBL] [Abstract][Full Text] [Related]
2. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries. Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Exploration of Ladder-Structured Large Aromatic Dianhydrides as Organic Cathodes for Rechargeable Lithium-Ion Batteries. Xie J; Chen W; Wang Z; Jie KCW; Liu M; Zhang Q Chem Asian J; 2017 Apr; 12(8):868-876. PubMed ID: 28221009 [TBL] [Abstract][Full Text] [Related]
4. Mo Tao D; Li T; Tang Y; Gui H; Cao Y; Xu F ACS Nano; 2024 Feb; ():. PubMed ID: 38334264 [TBL] [Abstract][Full Text] [Related]
5. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
6. Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for Lithium-Ion Batteries. Ba Z; Wang Z; Luo M; Li HB; Li Y; Huang T; Dong J; Zhang Q; Zhao X ACS Appl Mater Interfaces; 2020 Jan; 12(1):807-817. PubMed ID: 31820911 [TBL] [Abstract][Full Text] [Related]
7. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. Deng W; Shen Y; Qian J; Cao Y; Yang H ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982 [TBL] [Abstract][Full Text] [Related]
8. A Molybdenum Polysulfide Chen D; Tao D; Ren X; Wen F; Li T; Chen Z; Cao Y; Xu F ACS Nano; 2022 Dec; 16(12):20510-20520. PubMed ID: 36410730 [TBL] [Abstract][Full Text] [Related]
9. Highly Branched VS Wang Y; Liu Z; Wang C; Yi X; Chen R; Ma L; Hu Y; Zhu G; Chen T; Tie Z; Ma J; Liu J; Jin Z Adv Mater; 2018 Aug; 30(32):e1802563. PubMed ID: 29939428 [TBL] [Abstract][Full Text] [Related]
10. Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. Labasan KB; Lin HJ; Baskoro F; Togonon JJH; Wong HQ; Chang CW; Arco SD; Yen HJ ACS Appl Mater Interfaces; 2021 Apr; 13(15):17467-17477. PubMed ID: 33825434 [TBL] [Abstract][Full Text] [Related]
11. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage. Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323 [TBL] [Abstract][Full Text] [Related]
12. Carbonyl and imine conjugated frameworks for aqueous Organo-Aluminum batteries with high specific capacity and low dissolution. Lu Y; Hu C; Hu Y; Zhang W; Li Z J Colloid Interface Sci; 2024 Jul; 665():181-187. PubMed ID: 38522158 [TBL] [Abstract][Full Text] [Related]
13. Designing High Performance Organic Batteries. Chen Y; Wang C Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710 [TBL] [Abstract][Full Text] [Related]
14. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Lu Y; Cai Y; Zhang Q; Chen J Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334 [TBL] [Abstract][Full Text] [Related]
15. Off-Planar, Two-Dimensional Polymer Cathode for High-Rate, Durable Rechargeable Magnesium Batteries. Tripathy D; M VH; Makri Nimbegondi Kotresh H; Babu PV; Sampath S ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35639024 [TBL] [Abstract][Full Text] [Related]
16. Synergistic π-Conjugation Organic Cathode for Ultra-Stable Aqueous Aluminum Batteries. Su J; Zhang M; Tian H; Han M; Sun Z; Du K; Cui F; Li J; Huang W; Hu Y Small; 2024 Jul; 20(29):e2312086. PubMed ID: 38412409 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Shi R; Liu L; Lu Y; Wang C; Li Y; Li L; Yan Z; Chen J Nat Commun; 2020 Jan; 11(1):178. PubMed ID: 31924753 [TBL] [Abstract][Full Text] [Related]
18. Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Cheng X; Zhang Z; Kong Q; Zhang Q; Wang T; Dong S; Gu L; Wang X; Ma J; Han P; Lin HJ; Chen CT; Cui G Angew Chem Int Ed Engl; 2020 Jul; 59(28):11477-11482. PubMed ID: 32277864 [TBL] [Abstract][Full Text] [Related]
19. Revealing the Reaction and Fading Mechanism of FeSe Tao D; Chen D; Yang H; Xu F Chemphyschem; 2022 Aug; 23(15):e202200248. PubMed ID: 35522010 [TBL] [Abstract][Full Text] [Related]
20. Anionic Se-Substitution toward High-Performance CuS Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]