BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34117739)

  • 1. Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications.
    Ding H; Meng L; Liu AC; Gumz ML; Bryant AJ; Mcclung CA; Tseng GC; Esser KA; Huo Z
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LimoRhyde: A Flexible Approach for Differential Analysis of Rhythmic Transcriptome Data.
    Singer JM; Hughey JJ
    J Biol Rhythms; 2019 Feb; 34(1):5-18. PubMed ID: 30472909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model.
    Zong W; Seney ML; Ketchesin KD; Gorczyca MT; Liu AC; Esser KA; Tseng GC; McClung CA; Huo Z
    Stat Med; 2023 Aug; 42(18):3236-3258. PubMed ID: 37265194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods detecting rhythmic gene expression are biologically relevant only for strong signal.
    Laloum D; Robinson-Rechavi M
    PLoS Comput Biol; 2020 Mar; 16(3):e1007666. PubMed ID: 32182235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal and circadian rhythmicity of the human blood transcriptome overlaps with organ- and tissue-specific expression of a non-human primate.
    Möller-Levet CS; Laing EE; Archer SN; Dijk DJ
    BMC Biol; 2022 Mar; 20(1):63. PubMed ID: 35264172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and epigenomics atlas of myotubes reveals insight into the circadian control of metabolism and development.
    Altıntaş A; Laker RC; Garde C; Barrès R; Zierath JR
    Epigenomics; 2020 Apr; 12(8):701-713. PubMed ID: 32157909
    [No Abstract]   [Full Text] [Related]  

  • 7. DiffCircaPipeline: a framework for multifaceted characterization of differential rhythmicity.
    Xue X; Zong W; Huo Z; Ketchesin KD; Scott MR; Petersen KA; Logan RW; Seney ML; McClung C; Tseng G
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TimeTrial: An Interactive Application for Optimizing the Design and Analysis of Transcriptomic Time-Series Data in Circadian Biology Research.
    Ness-Cohn E; Iwanaszko M; Kath WL; Allada R; Braun R
    J Biol Rhythms; 2020 Oct; 35(5):439-451. PubMed ID: 32613882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies.
    Chu C; Fang Z; Hua X; Yang Y; Chen E; Cowley AW; Liang M; Liu P; Lu Y
    BMC Genomics; 2015 Jun; 16(1):455. PubMed ID: 26070955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms.
    Weger BD; Gobet C; David FPA; Atger F; Martin E; Phillips NE; Charpagne A; Weger M; Naef F; Gachon F
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33452134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
    Yang R; Su Z
    Bioinformatics; 2010 Jun; 26(12):i168-74. PubMed ID: 20529902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential rhythmicity: detecting altered rhythmicity in biological data.
    Thaben PF; Westermark PO
    Bioinformatics; 2016 Sep; 32(18):2800-8. PubMed ID: 27207944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tauFisher predicts circadian time from a single sample of bulk and single-cell pseudobulk transcriptomic data.
    Duan J; Ngo MN; Karri SS; Tsoi LC; Gudjonsson JE; Shahbaba B; Lowengrub J; Andersen B
    Nat Commun; 2024 May; 15(1):3840. PubMed ID: 38714698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hundreds of LncRNAs Display Circadian Rhythmicity in Zebrafish Larvae.
    Mishra SK; Zhong Z; Wang H
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
    Li JZ; Bunney BG; Meng F; Hagenauer MH; Walsh DM; Vawter MP; Evans SJ; Choudary PV; Cartagena P; Barchas JD; Schatzberg AF; Jones EG; Myers RM; Watson SJ; Akil H; Bunney WE
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9950-5. PubMed ID: 23671070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for setup and circadian analysis of inverted feeding in mice.
    Xin H; Huang R; Zhou M; Bao X; Chen J; Zeng F; Wan X; Tong S; Deng F; Li MD; Zhang Z
    STAR Protoc; 2021 Sep; 2(3):100701. PubMed ID: 34382024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible dysregulation of renal circadian rhythm in lupus nephritis.
    Mishra R; Bethunaickan R; Berthier CC; Yi Z; Strohl JJ; Huerta PT; Zhang W; Davidson A
    Mol Med; 2021 Sep; 27(1):99. PubMed ID: 34488619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of algorithms detecting differential rhythmicity in transcriptomic data.
    Miao L; Weidemann DE; Ngo K; Unruh BA; Kojima S
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T
    de Assis LVM; Harder L; Lacerda JT; Parsons R; Kaehler M; Cascorbi I; Nagel I; Rawashdeh O; Mittag J; Oster H
    Elife; 2022 Jul; 11():. PubMed ID: 35894384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.