These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34117740)

  • 61. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DeepAFP: An effective computational framework for identifying antifungal peptides based on deep learning.
    Yao L; Zhang Y; Li W; Chung CR; Guan J; Zhang W; Chiang YC; Lee TY
    Protein Sci; 2023 Oct; 32(10):e4758. PubMed ID: 37595093
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
    Xie R; Li J; Wang J; Dai W; Leier A; Marquez-Lago TT; Akutsu T; Lithgow T; Song J; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32599617
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
    Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G
    Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.
    Yan K; Lv H; Guo Y; Peng W; Liu B
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural class prediction of protein using novel feature extraction method from chaos game representation of predicted secondary structure.
    Zhang L; Kong L; Han X; Lv J
    J Theor Biol; 2016 Jul; 400():1-10. PubMed ID: 27084358
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inter-domain distance prediction based on deep learning for domain assembly.
    Ge F; Peng C; Cui X; Xia Y; Zhang G
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36920090
    [TBL] [Abstract][Full Text] [Related]  

  • 69. AntiMF: A deep learning framework for predicting anticancer peptides based on multi-view feature extraction.
    Liu J; Li M; Chen X
    Methods; 2022 Nov; 207():38-43. PubMed ID: 36100141
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation.
    Stapor K; Kotowski K; Smolarczyk T; Roterman I
    BMC Bioinformatics; 2022 Mar; 23(1):100. PubMed ID: 35317722
    [TBL] [Abstract][Full Text] [Related]  

  • 71. GHS-NET a generic hybridized shallow neural network for multi-label biomedical text classification.
    Ibrahim MA; Ghani Khan MU; Mehmood F; Asim MN; Mahmood W
    J Biomed Inform; 2021 Apr; 116():103699. PubMed ID: 33601013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.
    Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z
    Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Template-based C8-SCORPION: a protein 8-state secondary structure prediction method using structural information and context-based features.
    Yaseen A; Li Y
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S3. PubMed ID: 25080939
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RiRPSSP: A unified deep learning method for prediction of regular and irregular protein secondary structures.
    Sofi MA; Wani MA
    J Bioinform Comput Biol; 2023 Feb; 21(1):2350001. PubMed ID: 36891973
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prediction of disease-associated nsSNPs by integrating multi-scale ResNet models with deep feature fusion.
    Ge F; Zhang Y; Xu J; Muhammad A; Song J; Yu DJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34953462
    [TBL] [Abstract][Full Text] [Related]  

  • 76. DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides.
    Li J; Pu Y; Tang J; Zou Q; Guo F
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3012-3019. PubMed ID: 32142462
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PrMFTP: Multi-functional therapeutic peptides prediction based on multi-head self-attention mechanism and class weight optimization.
    Yan W; Tang W; Wang L; Bin Y; Xia J
    PLoS Comput Biol; 2022 Sep; 18(9):e1010511. PubMed ID: 36094961
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 79. PTPD: predicting therapeutic peptides by deep learning and word2vec.
    Wu C; Gao R; Zhang Y; De Marinis Y
    BMC Bioinformatics; 2019 Sep; 20(1):456. PubMed ID: 31492094
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A unified multitask architecture for predicting local protein properties.
    Qi Y; Oja M; Weston J; Noble WS
    PLoS One; 2012; 7(3):e32235. PubMed ID: 22461885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.