These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34117760)
1. Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons. Lemon RN; Baker SN; Kraskov A Cereb Cortex; 2021 Oct; 31(11):5131-5138. PubMed ID: 34117760 [TBL] [Abstract][Full Text] [Related]
2. Large identified pyramidal cells in macaque motor and premotor cortex exhibit "thin spikes": implications for cell type classification. Vigneswaran G; Kraskov A; Lemon RN J Neurosci; 2011 Oct; 31(40):14235-42. PubMed ID: 21976508 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. Suter BA; Migliore M; Shepherd GM Cereb Cortex; 2013 Aug; 23(8):1965-77. PubMed ID: 22761308 [TBL] [Abstract][Full Text] [Related]
4. Identification of basolateral amygdala projection cells and interneurons using extracellular recordings. Likhtik E; Pelletier JG; Popescu AT; Paré D J Neurophysiol; 2006 Dec; 96(6):3257-65. PubMed ID: 17110739 [TBL] [Abstract][Full Text] [Related]
5. Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. González-Burgos G; Krimer LS; Povysheva NV; Barrionuevo G; Lewis DA J Neurophysiol; 2005 Feb; 93(2):942-53. PubMed ID: 15385591 [TBL] [Abstract][Full Text] [Related]
6. Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. Fellous JM; Houweling AR; Modi RH; Rao RP; Tiesinga PH; Sejnowski TJ J Neurophysiol; 2001 Apr; 85(4):1782-7. PubMed ID: 11287500 [TBL] [Abstract][Full Text] [Related]
7. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex. Kaneko K; Koyanagi Y; Oi Y; Kobayashi M Neuroscience; 2016 Dec; 339():548-560. PubMed ID: 27746347 [TBL] [Abstract][Full Text] [Related]
8. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro. Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993 [TBL] [Abstract][Full Text] [Related]
9. Dendritic-targeting interneuron controls spike timing of hippocampal CA1 pyramidal neuron via activation of I(h). Park S; Kwag J Neurosci Lett; 2012 Aug; 523(1):9-14. PubMed ID: 22698581 [TBL] [Abstract][Full Text] [Related]
10. [Correlation between the refractory periods and threshold potentials and the spike programming in cortical neurons]. Chen N; Wu YL; Wang JH Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2008 Feb; 24(1):14-7. PubMed ID: 21141545 [TBL] [Abstract][Full Text] [Related]
11. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. Takahashi S; Anzai Y; Sakurai Y J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Baranyi A; Szente MB; Woody CD J Neurophysiol; 1993 Jun; 69(6):1850-64. PubMed ID: 8350126 [TBL] [Abstract][Full Text] [Related]
13. Fast pre-potential generation in rat hippocampal CA1 pyramidal neurons. Turner RW; Meyers DE; Barker JL Neuroscience; 1993 Apr; 53(4):949-59. PubMed ID: 8506028 [TBL] [Abstract][Full Text] [Related]
14. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties. Zhou FM; Hablitz JJ J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological diversity of pyramidal-shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro. Scharfman HE Hippocampus; 1995; 5(4):287-305. PubMed ID: 8589793 [TBL] [Abstract][Full Text] [Related]
16. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex. Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200 [TBL] [Abstract][Full Text] [Related]
17. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. Turner RW; Meyers DE; Richardson TL; Barker JL J Neurosci; 1991 Jul; 11(7):2270-80. PubMed ID: 2066782 [TBL] [Abstract][Full Text] [Related]
18. Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. Richardson TL; Turner RW; Miller JJ J Neurophysiol; 1987 Nov; 58(5):981-96. PubMed ID: 3694254 [TBL] [Abstract][Full Text] [Related]
19. Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks. English DF; McKenzie S; Evans T; Kim K; Yoon E; Buzsáki G Neuron; 2017 Oct; 96(2):505-520.e7. PubMed ID: 29024669 [TBL] [Abstract][Full Text] [Related]
20. Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. Miller MN; Okaty BW; Nelson SB J Neurosci; 2008 Dec; 28(51):13716-26. PubMed ID: 19091962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]