These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34117937)
1. Transcriptome response of maize (Zea mays L.) seedlings to heat stress. Li ZG; Ye XY Protoplasma; 2022 Mar; 259(2):357-369. PubMed ID: 34117937 [TBL] [Abstract][Full Text] [Related]
2. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize ( Xue M; Han X; Zhang L; Chen S Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540348 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Qian Y; Ren Q; Zhang J; Chen L Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress. Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J; Yan B; Lou X; Ma H; Ruan S BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
9. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response. Yang Y; Li Z; Zhang J Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892463 [No Abstract] [Full Text] [Related]
10. Transcriptomic Analysis of Heat Stress Response in Quan J; Li X; Li Z; Wu M; Zhu B; Hong SB; Shi J; Zhu Z; Xu L; Zang Y Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047402 [TBL] [Abstract][Full Text] [Related]
11. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
12. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.). Hou Y; Zeng W; Ao C; Huang J J Biotechnol; 2024 Mar; 383():39-54. PubMed ID: 38346451 [TBL] [Abstract][Full Text] [Related]
13. Maize cytolines as models to study the impact of different cytoplasms on gene expression under heat stress conditions. Ardelean IV; Bălăcescu L; Sicora O; Bălăcescu O; Mladin L; Haș V; Miclăuș M BMC Plant Biol; 2023 Jan; 23(1):4. PubMed ID: 36588161 [TBL] [Abstract][Full Text] [Related]
14. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. Guo J; Wang Z; Qu L; Hu Y; Lu D BMC Plant Biol; 2022 Sep; 22(1):432. PubMed ID: 36076169 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Analysis of Three Differentially Senescing Maize ( Han X; Zhang D; Hao H; Luo Y; Zhu Z; Kuai B Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372930 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and weighted gene co-expression network analysis of tropic and temperate maize inbred lines recovering from heat stress. Long Y; Qin Q; Zhang J; Zhu Z; Liu Y; Gu L; Jiang H; Si W Plant Sci; 2023 Feb; 327():111538. PubMed ID: 36423743 [TBL] [Abstract][Full Text] [Related]
19. The Regulatory Network of Sweet Corn ( Wang Z; Xiao Y; Chang H; Sun S; Wang J; Liang Q; Wu Q; Wu J; Qin Y; Chen J; Wang G; Wang Q Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446023 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome analysis of Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae-Bruchinae) after heat and cold stress exposure. Zhang C; Wang H; Zhuang G; Zheng H; Zhang X J Therm Biol; 2023 Feb; 112():103479. PubMed ID: 36796922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]