BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34117937)

  • 21. Comparative Transcriptomics Reveals the Molecular Mechanism of the Parental Lines of Maize Hybrid An'nong876 in Response to Salt Stress.
    Zhang X; Liu J; Huang Y; Wu H; Hu X; Cheng B; Ma Q; Zhao Y
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Hu W; Liao J; Zhang J; Ren Q
    Biochem Biophys Res Commun; 2019 May; 512(4):742-749. PubMed ID: 30926168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage.
    Zhao P; Sun L; Zhang S; Jiao B; Wang J; Ma C
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses.
    Zhang LM; Liu XG; Qu XN; Yu Y; Han SP; Dou Y; Xu YY; Jing HC; Hao DY
    J Integr Plant Biol; 2013 Nov; 55(11):1147-65. PubMed ID: 24034274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.).
    Yue R; Lu C; Qi J; Han X; Yan S; Guo S; Liu L; Fu X; Chen N; Yin H; Chi H; Tie S
    Front Plant Sci; 2016; 7():1298. PubMed ID: 27630647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings.
    Jiang Z; Jin F; Shan X; Li Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.).
    Singh P; Kumar K; Jha AK; Yadava P; Pal M; Rakshit S; Singh I
    Sci Rep; 2022 Mar; 12(1):4211. PubMed ID: 35273237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptome analysis reveals heat stress-responsive genes and their signalling pathways in lilies (Lilium longiflorum vs. Lilium distichum).
    Fu Y; Yang L; Gao H; Wenji X; Li Q; Li H; Gao J
    PLoS One; 2020; 15(10):e0239605. PubMed ID: 33006971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y
    J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize.
    Yu F; Tan Z; Fang T; Tang K; Liang K; Qiu F
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signaling molecule glutamic acid initiates the expression of genes related to methylglyoxal scavenging and osmoregulation systems in maize seedlings.
    Qiu XM; Sun YY; Li ZG
    Plant Signal Behav; 2022 Dec; 17(1):1994257. PubMed ID: 34875972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage.
    Wu DC; Zhu JF; Shu ZZ; Wang W; Yan C; Xu SB; Wu DX; Wang CY; Dong ZR; Sun G
    Protoplasma; 2020 Nov; 257(6):1615-1637. PubMed ID: 32728849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore
    Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH
    Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative transcriptome analysis of cold-tolerant and -sensitive asparagus bean under chilling stress and recovery.
    Miao M; Tan H; Liang L; Huang H; Chang W; Zhang J; Li J; Tang Y; Li Z; Lai Y; Yang L; Li H
    PeerJ; 2022; 10():e13167. PubMed ID: 35341039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.
    Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B
    Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep.
    Li YX; Feng XP; Wang HL; Meng CH; Zhang J; Qian Y; Zhong JF; Cao SX
    Cell Stress Chaperones; 2019 Nov; 24(6):1045-1054. PubMed ID: 31428918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome Analysis Revealed the Potential Molecular Mechanism of Anthocyanidins' Improved Salt Tolerance in Maize Seedlings.
    Wang J; Yuan Z; Li D; Cai M; Liang Z; Chen Q; Du X; Wang J; Gu R; Li L
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Changes in Seed Germination under Low-Temperature Stress in Maize.
    Meng A; Wen D; Zhang C
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.