BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34118398)

  • 1. A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space.
    Ghosal S; Chen Q; Pergola G; Goldman AL; Ulrich W; Berman KF; Blasi G; Fazio L; Rampino A; Bertolino A; Weinberger DR; Mattay VS; Venkataraman A
    Neuroimage; 2021 Sep; 238():118200. PubMed ID: 34118398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI.
    Juneja A; Rana B; Agrawal RK
    Comput Methods Programs Biomed; 2018 Mar; 155():139-152. PubMed ID: 29512494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method.
    Cao H; Duan J; Lin D; Calhoun V; Wang YP
    BMC Med Genomics; 2013; 6 Suppl 3(Suppl 3):S2. PubMed ID: 24565219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings.
    Yu Y; Shen H; Zhang H; Zeng LL; Xue Z; Hu D
    Biomed Eng Online; 2013 Feb; 12():10. PubMed ID: 23390976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features.
    Zarogianni E; Storkey AJ; Johnstone EC; Owens DG; Lawrie SM
    Schizophr Res; 2017 Mar; 181():6-12. PubMed ID: 27613509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative embedding for model-based classification of fMRI data.
    Brodersen KH; Schofield TM; Leff AP; Ong CS; Lomakina EI; Buhmann JM; Stephan KE
    PLoS Comput Biol; 2011 Jun; 7(6):e1002079. PubMed ID: 21731479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity.
    de Pierrefeu A; Fovet T; Hadj-Selem F; Löfstedt T; Ciuciu P; Lefebvre S; Thomas P; Lopes R; Jardri R; Duchesnay E
    Hum Brain Mapp; 2018 Apr; 39(4):1777-1788. PubMed ID: 29341341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity.
    Zhang Y; Peng P; Ju Y; Li G; Calhoun VD; Wang YP
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2621-2629. PubMed ID: 32071012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel event-related fMRI supervoxels-based representation and its application to schizophrenia diagnosis.
    Cruz-Martinez C; Reyes-Garcia CA; Vanello N
    Comput Methods Programs Biomed; 2022 Jan; 213():106509. PubMed ID: 34800805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study.
    Winterburn JL; Voineskos AN; Devenyi GA; Plitman E; de la Fuente-Sandoval C; Bhagwat N; Graff-Guerrero A; Knight J; Chakravarty MM
    Schizophr Res; 2019 Dec; 214():3-10. PubMed ID: 29274736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarker Identification Through Integrating fMRI and Epigenetics.
    Bai Y; Pascal Z; Hu W; Calhoun VD; Wang YP
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1186-1196. PubMed ID: 31395533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis.
    Lin D; Calhoun VD; Wang YP
    Med Image Anal; 2014 Aug; 18(6):891-902. PubMed ID: 24247004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia.
    Li G; Han D; Wang C; Hu W; Calhoun VD; Wang YP
    Comput Methods Programs Biomed; 2020 Jan; 183():105073. PubMed ID: 31525548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint sparse canonical correlation analysis for detecting differential imaging genetics modules.
    Fang J; Lin D; Schulz SC; Xu Z; Calhoun VD; Wang YP
    Bioinformatics; 2016 Nov; 32(22):3480-3488. PubMed ID: 27466625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic value of structural and diffusion imaging measures in schizophrenia.
    Lee J; Chon MW; Kim H; Rathi Y; Bouix S; Shenton ME; Kubicki M
    Neuroimage Clin; 2018; 18():467-474. PubMed ID: 29876254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics.
    Zhang A; Fang J; Hu W; Calhoun VD; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1350-1360. PubMed ID: 31689199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework.
    Varol E; Sotiras A; Davatzikos C;
    Neuroimage; 2017 Jan; 145(Pt B):346-364. PubMed ID: 26923371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-CNN based discrimination of schizophrenia using resting-state fMRI.
    Qureshi MNI; Oh J; Lee B
    Artif Intell Med; 2019 Jul; 98():10-17. PubMed ID: 31521248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.