BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34118622)

  • 1. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability.
    Liu J; Yang X; Liu H; Jia X; Bao Y
    Chemosphere; 2021 Nov; 282():131116. PubMed ID: 34118622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust.
    Gao Y; Jiang Z; Li J; Xie W; Jiang Q; Bi M; Zhang Y
    Environ Res; 2019 May; 172():561-568. PubMed ID: 30861465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of biochar derived from co-pyrolysis of Enteromorpha prolifera and corn straw and its potential as a soil amendment.
    Suo F; You X; Yin S; Wu H; Zhang C; Yu X; Sun R; Li Y
    Sci Total Environ; 2021 Dec; 798():149167. PubMed ID: 34375261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of boron-doped corn straw biochar: Fe (Ⅱ) removal equilibrium and kinetics.
    Sui L; Tang C; Du Q; Zhao Y; Cheng K; Yang F
    J Environ Sci (China); 2021 Aug; 106():116-123. PubMed ID: 34210427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue.
    Guo C; Zou J; Yang J; Wang K; Song S
    PLoS One; 2020; 15(8):e0238105. PubMed ID: 32853282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative and quantitative analysis for Cd
    Liu B; Zhang Z; Guan DX; Wang B; Zhou S; Chen T; Wang J; Li Y; Gao B
    Chemosphere; 2023 Jul; 330():138701. PubMed ID: 37062388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics and mechanisms of Cd
    Chen F; Sun Y; Liang C; Yang T; Mi S; Dai Y; Yu M; Yao Q
    Sci Rep; 2022 Oct; 12(1):17714. PubMed ID: 36271027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium.
    Li C; Huang Q; Zhang H; Wang Q; Xue R; Guo G; Hu J; Li T; Wang J; Hu S
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Modified Biochar Prepared by Co-pyrolysis of MgO on Phosphate Adsorption Performance and Seed Germination.
    Tu P; Zhang G; Cen Y; Huang B; Li J; Li Y; Deng L; Yuan H
    Chempluschem; 2024 Jan; 89(1):e202300305. PubMed ID: 37814376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.
    Park JH; Ok YS; Kim SH; Cho JS; Heo JS; Delaune RD; Seo DC
    Environ Geochem Health; 2015 Dec; 37(6):969-83. PubMed ID: 26040973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.
    Ma F; Zhao B; Diao J
    Water Sci Technol; 2016 Sep; 74(6):1335-1345. PubMed ID: 27685963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals.
    Li C; Zhang L; Gao Y; Li A
    Waste Manag; 2018 Sep; 79():625-637. PubMed ID: 30343795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass.
    Zhao B; Xu X; Zhang R; Cui M
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16408-16419. PubMed ID: 33387322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal.
    Yuan X; Zhang X; Lv H; Xu Y; Bai T
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification mechanism of city tail water by constructed wetland substrate with NaOH-modified corn straw biochar.
    Wang H; Wang X; Teng H; Xu J; Sheng L
    Ecotoxicol Environ Saf; 2022 Jun; 238():113597. PubMed ID: 35533448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal.
    Yang SS; Chen YD; Zhang Y; Zhou HM; Ji XY; He L; Xing DF; Ren NQ; Ho SH; Wu WM
    Environ Pollut; 2019 Sep; 252(Pt B):1142-1153. PubMed ID: 31252112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management.
    Kumar A; Bhattacharya T; Shaikh WA; Roy A; Mukherjee S; Kumar M
    Environ Res; 2021 Sep; 200():111758. PubMed ID: 34303680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adsorption Performance and Mechanism of Oxytetracycline in Water by KOH Modified Biochar Derived from Corn Straw].
    Liu ZT; Sun YF; Fei ZH; Sha XL; Wen XJ; Qian BB; Chen J; Gu CG
    Huan Jing Ke Xue; 2024 Jan; 45(1):594-605. PubMed ID: 38216508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb(ii) removal potential.
    Fan S; Sun Y; Yang T; Chen Y; Yan B; Li R; Chen G
    RSC Adv; 2020 Feb; 10(11):6362-6376. PubMed ID: 35496019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.