These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34118669)
1. Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. Li Q; Lin H; Zhang S; Yuan X; Gholizadeh M; Wang Y; Xiang J; Hu S; Hu X Sci Total Environ; 2021 Oct; 791():148134. PubMed ID: 34118669 [TBL] [Abstract][Full Text] [Related]
2. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Lang Q; Guo Y; Zheng Q; Liu Z; Gai C Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044 [TBL] [Abstract][Full Text] [Related]
3. Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. Li Q; Zhang S; Gholizadeh M; Hu X; Yuan X; Sarkar B; Vithanage M; Mašek O; Ok YS Sci Total Environ; 2021 Sep; 786():147381. PubMed ID: 33975118 [TBL] [Abstract][Full Text] [Related]
4. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes. Ipiales RP; Mohedano AF; Diaz-Portuondo E; Diaz E; de la Rubia MA Waste Manag; 2023 Sep; 169():267-275. PubMed ID: 37481937 [TBL] [Abstract][Full Text] [Related]
5. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis. Lang Q; Zhang B; Liu Z; Chen Z; Xia Y; Li D; Ma J; Gai C Bioresour Technol; 2019 Jan; 271():75-83. PubMed ID: 30265955 [TBL] [Abstract][Full Text] [Related]
6. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. Lang Q; Zhang B; Liu Z; Jiao W; Xia Y; Chen Z; Li D; Ma J; Gai C J Environ Manage; 2019 Mar; 233():440-446. PubMed ID: 30593003 [TBL] [Abstract][Full Text] [Related]
7. Multivariate and multi-interface insights into carbon and energy recovery and conversion characteristics of hydrothermal carbonization of biomass waste from duck farm. Yan T; Zhang T; Wang S; Andrea K; Peng H; Yuan H; Zhu Z Waste Manag; 2023 Oct; 170():154-165. PubMed ID: 37582310 [TBL] [Abstract][Full Text] [Related]
8. Seawater as supplemental moisture: The effect of Co-hydrothermal carbonization products obtained from chicken manure and cornstalk. Li Z; Jia J; Zhao W; Jiang L; Tian W J Environ Manage; 2023 Nov; 345():118819. PubMed ID: 37597367 [TBL] [Abstract][Full Text] [Related]
9. Impact of pyrochar and hydrochar derived from digestate on the co-digestion of sewage sludge and swine manure. Xu S; Wang C; Duan Y; Wong JW Bioresour Technol; 2020 Oct; 314():123730. PubMed ID: 32615446 [TBL] [Abstract][Full Text] [Related]
10. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Nzediegwu C; Naeth MA; Chang SX Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274 [TBL] [Abstract][Full Text] [Related]
11. Treatment of swine manure by hydrothermal carbonization: The influential effect and preliminary mechanism of surfactants. Feng ZT; Xiong JB; Wang GF; Li L; Zhou CF; Zhou CH; Huang HJ Sci Total Environ; 2024 Oct; 946():174233. PubMed ID: 38936726 [TBL] [Abstract][Full Text] [Related]
12. Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk. Lang Q; Chen M; Guo Y; Liu Z; Gai C J Environ Manage; 2019 Mar; 234():97-103. PubMed ID: 30616193 [TBL] [Abstract][Full Text] [Related]
13. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Optimal parameters for enhanced nutrient reclamation, carbon sequestration, and heavy metals passivation. Xiong W; Luo Y; Shangguan W; Deng Y; Li R; Song D; Zhang M; Li Z; Xiao R Waste Manag; 2024 Dec; 190():174-185. PubMed ID: 39326066 [TBL] [Abstract][Full Text] [Related]
14. Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure. Lang Q; Zhang B; Li Y; Liu Z; Jiao W Waste Manag; 2019 Dec; 100():84-90. PubMed ID: 31525676 [TBL] [Abstract][Full Text] [Related]
15. Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation. Ipiales RP; Sarrion A; Diaz E; de la Rubia MA; Diaz-Portuondo E; Coronella CJ; Mohedano AF Environ Res; 2024 Mar; 245():118062. PubMed ID: 38157959 [TBL] [Abstract][Full Text] [Related]
16. Effects of hydrolysis and carbonization reactions on hydrochar production. Fakkaew K; Koottatep T; Polprasert C Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the fuel properties of dairy manure by increasing the biomass-to-water ratio in hydrothermal carbonization. Aliyu M; Iwabuchi K; Itoh T PLoS One; 2022; 17(7):e0269935. PubMed ID: 35849561 [TBL] [Abstract][Full Text] [Related]
18. The impact of hydrothermal carbonization on the surface functionalities of wet waste materials for water treatment applications. Niinipuu M; Latham KG; Boily JF; Bergknut M; Jansson S Environ Sci Pollut Res Int; 2020 Jul; 27(19):24369-24379. PubMed ID: 32306265 [TBL] [Abstract][Full Text] [Related]
19. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. Wang T; Si B; Gong Z; Zhai Y; Cao M; Peng C Bioresour Technol; 2020 Nov; 316():123900. PubMed ID: 32739578 [TBL] [Abstract][Full Text] [Related]
20. Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution. Benedetti V; Pecchi M; Baratieri M Bioresour Technol; 2022 Jun; 353():127142. PubMed ID: 35413420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]