BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34119149)

  • 1. Solid encapsulation of lauric acid into "empty" V-type starch: Structural characteristics and emulsifying properties.
    Huang L; Li S; Tan CP; Feng Y; Zhang B; Fu X; Huang Q
    Carbohydr Polym; 2021 Sep; 267():118181. PubMed ID: 34119149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil.
    Feng Y; Zhang B; Fu X; Huang Q
    Carbohydr Polym; 2022 Sep; 292():119715. PubMed ID: 35725189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property.
    Zhang L; Xiong T; Wang XF; Chen DL; He XD; Zhang C; Wu C; Li Q; Ding X; Qian JY
    Int J Biol Macromol; 2021 Nov; 190():130-140. PubMed ID: 34481848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network.
    Li S; Zhang B; Li C; Fu X; Huang Q
    Food Chem; 2020 Feb; 305():125476. PubMed ID: 31525589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile solid-phase synthesis of starch-fatty acid complexes via mechanical activation for stabilizing curcumin-loaded Pickering emulsions.
    Zhou Z; Liang Z; Zhang Y; Hu H; Gan T; Huang Z
    Food Res Int; 2023 Apr; 166():112625. PubMed ID: 36914331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties.
    Chen Y; Han X; Chen DL; Ren YP; Yang SY; Huang YX; Yang J; Zhang L
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale stabilization mechanism of pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles.
    Geng S; Liu X; Ma H; Liu B; Liang G
    Food Chem; 2021 Sep; 355():129660. PubMed ID: 33799246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fabrication and Characterization of Pickering Emulsion Gels Stabilized by Sorghum Flour.
    Song L; Zhang S; Liu B
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pickering emulsions stabilized by media-milled starch particles.
    Lu X; Xiao J; Huang Q
    Food Res Int; 2018 Mar; 105():140-149. PubMed ID: 29433201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution.
    Wang K; Hong Y; Gu Z; Cheng L; Li Z; Li C
    Int J Biol Macromol; 2020 Jul; 155():273-285. PubMed ID: 32234443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation and stabilization of β-carotene by amylose inclusion complexes.
    Kong L; Bhosale R; Ziegler GR
    Food Res Int; 2018 Mar; 105():446-452. PubMed ID: 29433235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of catechin-starch nanoparticles composites and its application as a Pickering emulsion stabilizer.
    Park JY; Cho DH; Choi DJ; Moon SY; Park EY; Kim JY
    Carbohydr Polym; 2024 May; 332():121950. PubMed ID: 38431403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion.
    Lin X; Li S; Yin J; Chang F; Wang C; He X; Huang Q; Zhang B
    Int J Biol Macromol; 2020 Jun; 152():1233-1241. PubMed ID: 31765743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier.
    Zhai K; Pei X; Wang C; Deng Y; Tan Y; Bai Y; Zhang B; Xu K; Wang P
    Int J Biol Macromol; 2019 Jun; 131():1032-1037. PubMed ID: 30898598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions.
    Abdul Hadi N; Marefati A; Matos M; Wiege B; Rayner M
    Carbohydr Polym; 2020 Jul; 240():116264. PubMed ID: 32475554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size.
    Li S; Li C; Yang Y; He X; Zhang B; Fu X; Tan CP; Huang Q
    Food Chem; 2019 Jun; 283():437-444. PubMed ID: 30722895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods.
    Patil U; Gulzar S; Ma L; Zhang B; Benjakul S
    Foods; 2023 Apr; 12(7):. PubMed ID: 37048376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size.
    Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q
    Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin.
    Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F
    Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.