BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 34119156)

  • 1. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives.
    Jiang J; Zhu Y; Jiang F
    Carbohydr Polym; 2021 Sep; 267():118188. PubMed ID: 34119156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp.
    Jiang J; Carrillo-Enríquez NC; Oguzlu H; Han X; Bi R; Saddler JN; Sun RC; Jiang F
    Carbohydr Polym; 2020 Nov; 247():116727. PubMed ID: 32829849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity.
    Tian D; Guo Y; Hu J; Yang G; Zhang J; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Jan; 142():288-297. PubMed ID: 31593728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids.
    Zhang Z; Song J; Han B
    Chem Rev; 2017 May; 117(10):6834-6880. PubMed ID: 28535680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts.
    Lopes AM; Bogel-Łukasik R
    ChemSusChem; 2015 Mar; 8(6):947-65. PubMed ID: 25703380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of lignin-containing nanocellulose fibrils from date palm waste using a green solvent.
    Raza M; Jawaid M; Abu-Jdayil B
    Int J Biol Macromol; 2024 May; 267(Pt 1):131540. PubMed ID: 38608992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process intensification strategies for green solvent mediated biomass pretreatment.
    Ullah A; Zhang Y; Liu C; Qiao Q; Shao Q; Shi J
    Bioresour Technol; 2023 Feb; 369():128394. PubMed ID: 36442603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.
    Tang X; Zuo M; Li Z; Liu H; Xiong C; Zeng X; Sun Y; Hu L; Liu S; Lei T; Lin L
    ChemSusChem; 2017 Jul; 10(13):2696-2706. PubMed ID: 28425225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids.
    Gschwend FJ; Brandt A; Chambon CL; Tu WC; Weigand L; Hallett JP
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.
    Taflick T; Schwendler LA; Rosa SML; Bica CID; Nachtigall SMB
    Int J Biol Macromol; 2017 Aug; 101():553-561. PubMed ID: 28322957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose.
    Socha AM; Parthasarathi R; Shi J; Pattathil S; Whyte D; Bergeron M; George A; Tran K; Stavila V; Venkatachalam S; Hahn MG; Simmons BA; Singh S
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3587-95. PubMed ID: 25136131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review.
    Teo HL; Wahab RA
    Int J Biol Macromol; 2020 Oct; 161():1414-1430. PubMed ID: 32791266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic liquids in biomass processing.
    Tan SS; Macfarlane DR
    Top Curr Chem; 2010; 290():311-39. PubMed ID: 21107802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.
    Procentese A; Johnson E; Orr V; Garruto Campanile A; Wood JA; Marzocchella A; Rehmann L
    Bioresour Technol; 2015 Sep; 192():31-6. PubMed ID: 26005926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose.
    Bhat AH; Khan I; Usmani MA; Umapathi R; Al-Kindy SMZ
    Int J Biol Macromol; 2019 May; 129():750-777. PubMed ID: 30593803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.
    Lee HV; Hamid SB; Zain SK
    ScientificWorldJournal; 2014; 2014():631013. PubMed ID: 25247208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening for ionic liquids dissolving (ligno-)cellulose.
    Zavrel M; Bross D; Funke M; Büchs J; Spiess AC
    Bioresour Technol; 2009 May; 100(9):2580-7. PubMed ID: 19157872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of the Chemical Character of Ionic Liquids on Biomass Pre-Treatment and Posterior Enzymatic Hydrolysis.
    Bernardo JR; Gírio FM; Łukasik RM
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of nanocellulose as a new material towards environmental sustainability.
    Dhali K; Ghasemlou M; Daver F; Cass P; Adhikari B
    Sci Total Environ; 2021 Jun; 775():145871. PubMed ID: 33631573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.