BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34119156)

  • 21. Green and Efficient Processing of Cinnamomum cassia Bark by Using Ionic Liquids: Extraction of Essential Oil and Construction of UV-Resistant Composite Films from Residual Biomass.
    Mehta MJ; Kumar A
    Chem Asian J; 2017 Dec; 12(24):3150-3155. PubMed ID: 28990285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.
    Hou Q; Ju M; Li W; Liu L; Chen Y; Yang Q
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28335528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes.
    Pena-Pereira F; Namieśnik J
    ChemSusChem; 2014 Jul; 7(7):1784-800. PubMed ID: 24811900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids.
    Şahin S
    J Pharm Biomed Anal; 2019 Sep; 174():324-329. PubMed ID: 31195320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.
    Brinchi L; Cotana F; Fortunati E; Kenny JM
    Carbohydr Polym; 2013 Apr; 94(1):154-69. PubMed ID: 23544524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.
    Li C; Knierim B; Manisseri C; Arora R; Scheller HV; Auer M; Vogel KP; Simmons BA; Singh S
    Bioresour Technol; 2010 Jul; 101(13):4900-6. PubMed ID: 19945861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of nanocellulose using acidic deep eutectic solvents based on choline chloride and carboxylic acids: A review.
    Wang Y; Liu H; Ji X; Wang Q; Tian Z; Fatehi P
    Int J Biol Macromol; 2023 Aug; 245():125227. PubMed ID: 37290548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green process for chemical functionalization of nanocellulose with carboxylic acids.
    Espino-Pérez E; Domenek S; Belgacem N; Sillard C; Bras J
    Biomacromolecules; 2014 Dec; 15(12):4551-60. PubMed ID: 25353612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives.
    Cao Y; Zhang R; Cheng T; Guo J; Xian M; Liu H
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):521-532. PubMed ID: 28012046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids.
    Shui T; Feng S; Yuan Z; Kuboki T; Xu CC
    Bioresour Technol; 2016 Oct; 218():953-61. PubMed ID: 27450125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisiting various mechanistic approaches for cellulose dissolution in different solvent systems: A comprehensive review.
    Nawaz H; He A; Wu Z; Wang X; Jiang Y; Ullah A; Xu F; Xie F
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):133012. PubMed ID: 38866296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of nanocellulose and its potential in reinforced composites: A review.
    Wang J; Liu X; Jin T; He H; Liu L
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):919-946. PubMed ID: 31122154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents.
    Li X; Ning C; Li L; Liu W; Ren Q; Hou Q
    Carbohydr Polym; 2021 Nov; 274():118650. PubMed ID: 34702469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.
    Farooq A; Patoary MK; Zhang M; Mussana H; Li M; Naeem MA; Mushtaq M; Farooq A; Liu L
    Int J Biol Macromol; 2020 Jul; 154():1050-1073. PubMed ID: 32201207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organosolv Processes.
    Brosse N; Hussin MH; Rahim AA
    Adv Biochem Eng Biotechnol; 2019; 166():153-176. PubMed ID: 28280848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocellulose: A Fundamental Material for Science and Technology Applications.
    Poulose A; Parameswaranpillai J; George JJ; Gopi JA; Krishnasamy S; Dominic C D M; Hameed N; Salim NV; Radoor S; Sienkiewicz N
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock.
    New EK; Tnah SK; Voon KS; Yong KJ; Procentese A; Yee Shak KP; Subramonian W; Cheng CK; Wu TY
    J Environ Manage; 2022 Apr; 307():114385. PubMed ID: 35104699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green and efficient synthesis of cellulose nanocrystals from Hamelia patens leftover via hydrolysis of microwave assisted-ionic liquid (MWAIL) pretreated microcrystalline cellulose.
    Naseem S; Rizwan M; Durrani AI; Munawar A; Siddique S; Habib F
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132791. PubMed ID: 38845256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.