BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34119174)

  • 21. Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs.
    Chen Q; Chen Y; Wu C
    Int J Biol Macromol; 2023 Apr; 234():123694. PubMed ID: 36801281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Choline chloride/urea as an effective plasticizer for production of cellulose films.
    Wang S; Peng X; Zhong L; Jing S; Cao X; Lu F; Sun R
    Carbohydr Polym; 2015 Mar; 117():133-139. PubMed ID: 25498618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Deep Eutectic Solvents on cellulosic fibres and paper properties: Green "chemical" refining.
    Mnasri A; Dhaouadi H; Khiari R; Halila S; Mauret E
    Carbohydr Polym; 2022 Sep; 292():119606. PubMed ID: 35725149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation.
    Du H; Parit M; Liu K; Zhang M; Jiang Z; Huang TS; Zhang X; Si C
    Carbohydr Polym; 2021 Oct; 270():118372. PubMed ID: 34364616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment.
    Han S; Wang R; Wang K; Jiang J; Xu J
    Bioresour Technol; 2022 Nov; 363():127905. PubMed ID: 36087647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production.
    Sirviö JA; Visanko M; Liimatainen H
    Biomacromolecules; 2016 Sep; 17(9):3025-32. PubMed ID: 27478001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile preparation of cellulose nanofibrils (CNFs) with a high yield and excellent dispersibility via succinic acid hydrolysis and NaClO
    Xu S; Huo D; Wang K; Yang Q; Hou Q; Zhang F
    Carbohydr Polym; 2021 Aug; 266():118118. PubMed ID: 34044934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers.
    Batishcheva EV; Sokolova DN; Fedotova VS; Sokolova MP; Nikolaeva AL; Vakulyuk AY; Shakhbazova CY; Ribeiro MCC; Karttunen M; Smirnov MA
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments.
    Li P; Sirviö JA; Haapala A; Liimatainen H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2846-2855. PubMed ID: 27997111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement.
    Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents.
    Ojala J; Visanko M; Laitinen O; Österberg M; Sirviö JA; Liimatainen H
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30366392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Esterified cellulose nanofibres from saw dust using vegetable oil.
    Mokhena TC; John MJ
    Int J Biol Macromol; 2020 Apr; 148():1109-1117. PubMed ID: 32004608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp.
    Duan C; Tian C; Feng X; Tian G; Liu X; Ni Y
    Bioresour Technol; 2023 Feb; 370():128543. PubMed ID: 36581230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a solid acid catalyst.
    Wu XQ; Liu PD; Liu Q; Xu SY; Zhang YC; Xu WR; Liu GD
    RSC Adv; 2021 Apr; 11(23):14071-14078. PubMed ID: 35423938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency.
    Xing L; Hu C; Zhang W; Guan L; Gu J
    Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.