These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 34119471)

  • 1. Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography.
    Renker M; Baumann S; Hamm CW; Tesche C; Kim WK; Savage RH; Coenen A; Nieman K; De Geer J; Persson A; Kruk M; Kepka C; Yang DH; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2021; 15(6):492-498. PubMed ID: 34119471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry.
    Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm.
    Schuessler M; Saner F; Al-Rashid F; Schlosser T
    Eur Radiol; 2022 Dec; 32(12):8761-8768. PubMed ID: 35729425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.
    von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C
    Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease.
    Guo W; Zhao S; Xu H; He W; Yin L; Yao Z; Xu Z; Jin H; Wu D; Li C; Yang S; Zeng M
    Eur Radiol; 2024 Sep; 34(9):5654-5665. PubMed ID: 38409549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Coronary Computed Tomography Angiography-Derived vs Invasive Fractional Flow Reserve Assessment: Meta-Analysis with Subgroup Evaluation of Intermediate Stenosis.
    Baumann S; Renker M; Hetjens S; Fuller SR; Becher T; Loßnitzer D; Lehmann R; Akin I; Borggrefe M; Lang S; Wichmann JL; Schoepf UJ
    Acad Radiol; 2016 Nov; 23(11):1402-1411. PubMed ID: 27639627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting lesion-specific ischemia in patients with coronary artery disease with computed tomography fractional flow reserve measured at different sites.
    Cai Z; Yu T; Yang Z; Hu H; Lin Y; Zhang H; Chen M; Shi G; Shen J
    BMC Med Imaging; 2023 Jun; 23(1):76. PubMed ID: 37277697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of machine-learning CT-derived fractional flow reserve for the diagnosis and management of coronary artery disease in the randomized CRESCENT trials.
    Nous FMA; Budde RPJ; Lubbers MM; Yamasaki Y; Kardys I; Bruning TA; Akkerhuis JM; Kofflard MJM; Kietselaer B; Galema TW; Nieman K
    Eur Radiol; 2020 Jul; 30(7):3692-3701. PubMed ID: 32166492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium.
    Coenen A; Kim YH; Kruk M; Tesche C; De Geer J; Kurata A; Lubbers ML; Daemen J; Itu L; Rapaka S; Sharma P; Schwemmer C; Persson A; Schoepf UJ; Kepka C; Hyun Yang D; Nieman K
    Circ Cardiovasc Imaging; 2018 Jun; 11(6):e007217. PubMed ID: 29914866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve.
    Jiang W; Pan Y; Hu Y; Leng X; Jiang J; Feng L; Xia Y; Sun Y; Wang J; Xiang J; Li C
    Biomed Eng Online; 2021 Aug; 20(1):77. PubMed ID: 34348731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis.
    Tang CX; Wang YN; Zhou F; Schoepf UJ; Assen MV; Stroud RE; Li JH; Zhang XL; Lu MJ; Zhou CS; Zhang DM; Yi Y; Yan J; Lu GM; Xu L; Zhang LJ
    Eur J Radiol; 2019 Jul; 116():90-97. PubMed ID: 31153580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic Performance of Fractional Flow Reserve Derived From Coronary CT Angiography: The ACCURATE-CT Study.
    Li C; Hu Y; Jiang J; Dong L; Sun Y; Tang L; Du C; Yin D; Jiang W; Leng X; Jiang F; Pan Y; Jiang X; Zhou Z; Koo BK; Xiang J; Wang J;
    JACC Cardiovasc Interv; 2024 Sep; 17(17):1980-1992. PubMed ID: 39177553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study.
    Koo BK; Erglis A; Doh JH; Daniels DV; Jegere S; Kim HS; Dunning A; DeFrance T; Lansky A; Leipsic J; Min JK
    J Am Coll Cardiol; 2011 Nov; 58(19):1989-97. PubMed ID: 22032711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective comparison of integrated on-site CT-fractional flow reserve and static CT perfusion with coronary CT angiography for detection of flow-limiting coronary stenosis.
    Guo W; Lin Y; Taniguchi A; Zhu Y; Tripathi P; Yang S; Liu J; Yun H; Jin H; Zhang J; Yang J; Zeng M
    Eur Radiol; 2021 Jul; 31(7):5096-5105. PubMed ID: 33409778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.
    Hae H; Kang SJ; Kim WJ; Choi SY; Lee JG; Bae Y; Cho H; Yang DH; Kang JW; Lim TH; Lee CH; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ
    PLoS Med; 2018 Nov; 15(11):e1002693. PubMed ID: 30422987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study.
    Di Jiang M; Zhang XL; Liu H; Tang CX; Li JH; Wang YN; Xu PP; Zhou CS; Zhou F; Lu MJ; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang B; Zhang DM; Yi Y; Xu L; Hu XH; Yang J; Lu GM; Ni QQ; Zhang LJ
    Eur Radiol; 2021 Mar; 31(3):1482-1493. PubMed ID: 32929641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR.
    Hu X; Yang M; Han L; Du Y
    Int J Cardiovasc Imaging; 2018 Dec; 34(12):1987-1996. PubMed ID: 30062537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow.
    Lin A; van Diemen PA; Motwani M; McElhinney P; Otaki Y; Han D; Kwan A; Tzolos E; Klein E; Kuronuma K; Grodecki K; Shou B; Rios R; Manral N; Cadet S; Danad I; Driessen RS; Berman DS; Nørgaard BL; Slomka PJ; Knaapen P; Dey D
    Circ Cardiovasc Imaging; 2022 Oct; 15(10):e014369. PubMed ID: 36252116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning based ischemia-specific stenosis prediction: A Chinese multicenter coronary CT angiography study.
    Zhang XL; Zhang B; Tang CX; Wang YN; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang DM; Hu XH; Xu L; Liu H; Sun ZY; Zhang LJ
    Eur J Radiol; 2023 Nov; 168():111133. PubMed ID: 37827088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invasive fractional-flow-reserve prediction by coronary CT angiography using artificial intelligence vs. computational fluid dynamics software in intermediate-grade stenosis.
    Peters B; Paul JF; Symons R; Franssen WMA; Nchimi A; Ghekiere O
    Int J Cardiovasc Imaging; 2024 Sep; 40(9):1875-1880. PubMed ID: 38963591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.