These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 34119579)
1. Nanomedicines functionalized with anti-EGFR ligands for active targeting in cancer therapy: Biological strategy, design and quality control. Nguyen PV; Allard-Vannier E; Chourpa I; Hervé-Aubert K Int J Pharm; 2021 Aug; 605():120795. PubMed ID: 34119579 [TBL] [Abstract][Full Text] [Related]
2. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Nguyen PV; Hervé-Aubert K; Chourpa I; Allard-Vannier E Int J Pharm; 2021 Nov; 609():121134. PubMed ID: 34571073 [TBL] [Abstract][Full Text] [Related]
3. Aptamer-guided nanomedicines for anticancer drug delivery. Alshaer W; Hillaireau H; Fattal E Adv Drug Deliv Rev; 2018 Sep; 134():122-137. PubMed ID: 30267743 [TBL] [Abstract][Full Text] [Related]
4. Nanomedicines Targeting the Tumor Microenvironment. Tong R; Langer R Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084 [TBL] [Abstract][Full Text] [Related]
5. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related]
6. Inorganic Porous Nanoparticles for Drug Delivery in Antitumoral Therapy. Parra-Nieto J; Del Cid MAG; de Cárcer IA; Baeza A Biotechnol J; 2021 Feb; 16(2):e2000150. PubMed ID: 32476279 [TBL] [Abstract][Full Text] [Related]
7. Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. Cheng T; Zhang Y; Liu J; Ding Y; Ou H; Huang F; An Y; Liu Y; Liu J; Shi L ACS Appl Mater Interfaces; 2018 Feb; 10(6):5296-5304. PubMed ID: 29338179 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Akbarzadeh Khiavi M; Safary A; Barar J; Ajoolabady A; Somi MH; Omidi Y Cell Mol Life Sci; 2020 Mar; 77(6):997-1019. PubMed ID: 31563999 [TBL] [Abstract][Full Text] [Related]
9. Ligand-based active targeting strategies for cancer theranostics. Bandyopadhyay A; Das T; Nandy S; Sahib S; Preetam S; Gopalakrishnan AV; Dey A Naunyn Schmiedebergs Arch Pharmacol; 2023 Dec; 396(12):3417-3441. PubMed ID: 37466702 [TBL] [Abstract][Full Text] [Related]
10. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Pérez-Herrero E; Fernández-Medarde A Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885 [TBL] [Abstract][Full Text] [Related]
11. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. van der Meel R; Vehmeijer LJ; Kok RJ; Storm G; van Gaal EV Adv Drug Deliv Rev; 2013 Oct; 65(10):1284-98. PubMed ID: 24018362 [TBL] [Abstract][Full Text] [Related]
13. Improved Targeting of Cancers with Nanotherapeutics. Foster C; Watson A; Kaplinsky J; Kamaly N Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194 [TBL] [Abstract][Full Text] [Related]
14. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Jiang Y; Jiang Z; Wang M; Ma L Adv Drug Deliv Rev; 2022 Jan; 180():114034. PubMed ID: 34736986 [TBL] [Abstract][Full Text] [Related]
15. Biological rationale for the design of polymeric anti-cancer nanomedicines. Zhou Y; Kopeček J J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337 [TBL] [Abstract][Full Text] [Related]
16. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. He Q; Shi J Adv Mater; 2014 Jan; 26(3):391-411. PubMed ID: 24142549 [TBL] [Abstract][Full Text] [Related]
18. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. David A Adv Drug Deliv Rev; 2017 Sep; 119():120-142. PubMed ID: 28506743 [TBL] [Abstract][Full Text] [Related]
19. Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pearce AK; Fuchs AV; Fletcher NL; Thurecht KJ Pharm Res; 2016 Oct; 33(10):2388-99. PubMed ID: 27225496 [TBL] [Abstract][Full Text] [Related]
20. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Mehra NK; Jain K; Jain NK Curr Pharm Des; 2015; 21(42):6157-64. PubMed ID: 26503145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]