These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34119652)
1. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance. Wearing OH; Scott GR Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110636. PubMed ID: 34119652 [TBL] [Abstract][Full Text] [Related]
2. The adaptive benefit of evolved increases in hemoglobin-O Wearing OH; Ivy CM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Natarajan C; Cheviron ZA; Storz JF; Scott GR BMC Biol; 2021 Jun; 19(1):128. PubMed ID: 34158035 [TBL] [Abstract][Full Text] [Related]
3. The role of the heart in the evolution of aerobic performance. Scott GR; Garvey KM; Wearing OH J Exp Biol; 2024 Oct; 227(20):. PubMed ID: 39045710 [TBL] [Abstract][Full Text] [Related]
5. Genetic variation in haemoglobin is associated with evolved changes in breathing in high-altitude deer mice. Ivy CM; Wearing OH; Natarajan C; Schweizer RM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Petersen EE; Fago A; Cheviron ZA; Storz JF; Scott GR J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 34913467 [TBL] [Abstract][Full Text] [Related]
6. Coordinated changes across the O Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808 [TBL] [Abstract][Full Text] [Related]
7. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice. Scott GR; Guo KH; Dawson NJ Integr Comp Biol; 2018 Sep; 58(3):506-518. PubMed ID: 29873740 [TBL] [Abstract][Full Text] [Related]
8. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089 [TBL] [Abstract][Full Text] [Related]
9. Physiological insight into the evolution of complex phenotypes: aerobic performance and the O2 transport pathway of vertebrates. Scott GR; Dalziel AC J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34387318 [TBL] [Abstract][Full Text] [Related]
10. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Jensen B; Storz JF; Fago A Comp Biochem Physiol A Mol Integr Physiol; 2016 May; 195():10-4. PubMed ID: 26808972 [TBL] [Abstract][Full Text] [Related]
11. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. Mahalingam S; McClelland GB; Scott GR J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073 [TBL] [Abstract][Full Text] [Related]
12. Adaptive increases in respiratory capacity and O Dawson NJ; Scott GR FASEB J; 2022 Jul; 36(7):e22391. PubMed ID: 35661419 [TBL] [Abstract][Full Text] [Related]
13. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude. Dane DM; Cao K; Lu H; Yilmaz C; Dolan J; Thaler CD; Ravikumar P; Hammond KA; Hsia CCW J Appl Physiol (1985); 2018 Nov; 125(5):1411-1423. PubMed ID: 30091664 [TBL] [Abstract][Full Text] [Related]
14. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes. Ivy CM; Scott GR Acta Physiol (Oxf); 2017 Dec; 221(4):266-282. PubMed ID: 28640969 [TBL] [Abstract][Full Text] [Related]
15. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes. Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797 [TBL] [Abstract][Full Text] [Related]
16. Evolution of physiological performance capacities and environmental adaptation: insights from high-elevation deer mice ( Storz JF; Cheviron ZA; McClelland GB; Scott GR J Mammal; 2019 May; 100(3):910-922. PubMed ID: 31138949 [TBL] [Abstract][Full Text] [Related]
17. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Cheviron ZA; Connaty AD; McClelland GB; Storz JF Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503 [TBL] [Abstract][Full Text] [Related]
18. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288 [TBL] [Abstract][Full Text] [Related]
19. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? Storz JF J Exp Biol; 2016 Oct; 219(Pt 20):3190-3203. PubMed ID: 27802149 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Velotta JP; Jones J; Wolf CJ; Cheviron ZA Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]