These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34119714)

  • 1. On a phase-field approach to model fracture of small intestine walls.
    Nagaraja S; Leichsenring K; Ambati M; De Lorenzis L; Böl M
    Acta Biomater; 2021 Aug; 130():317-331. PubMed ID: 34119714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2018 Apr; 331():23-52. PubMed ID: 31649410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture toughness determination of porcine muscle tissue based on AQLV model derived viscous dissipated energy.
    Aryeetey OJ; Frank M; Lorenz A; Pahr DH
    J Mech Behav Biomed Mater; 2022 Nov; 135():105429. PubMed ID: 36113396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phase-field model for fracture in biological tissues.
    Raina A; Miehe C
    Biomech Model Mechanobiol; 2016 Jun; 15(3):479-96. PubMed ID: 26165516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of progressive damage and rupture in fibrous biological tissues: application to aortic dissection.
    Gültekin O; Hager SP; Dal H; Holzapfel GA
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1607-1628. PubMed ID: 31093869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
    Stylianopoulos T; Barocas VH
    J Biomech Eng; 2007 Aug; 129(4):611-8. PubMed ID: 17655483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars.
    Han L; Wang L; Song J; Boyce MC; Ortiz C
    Nano Lett; 2011 Sep; 11(9):3868-74. PubMed ID: 21755939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study.
    Chua JQI; Srinivasan DV; Idapalapati S; Miserez A
    Acta Biomater; 2021 May; 126():339-349. PubMed ID: 33727196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery.
    Amini Khoiy K; Abdulhai S; Glenn IC; Ponsky TA; Amini R
    J Mech Behav Biomed Mater; 2018 Feb; 78():154-163. PubMed ID: 29156354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation.
    Mohammadkhah M; Murphy P; Simms CK
    J Mech Behav Biomed Mater; 2016 Sep; 62():468-480. PubMed ID: 27281164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional dependent variation in mechanical properties of planar anisotropic porcine skin tissue.
    Lakhani P; Dwivedi KK; Kumar N
    J Mech Behav Biomed Mater; 2020 Apr; 104():103693. PubMed ID: 32174437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.