These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 34119761)
21. Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. Zhao B; Fan B; Shao G; Zhao W; Zhang R ACS Appl Mater Interfaces; 2015 Aug; 7(33):18815-23. PubMed ID: 26259116 [TBL] [Abstract][Full Text] [Related]
22. Bimetallic ZIF-derived conductive network of Co-Zn@NPC@MWCNT nanocomposites for efficient electromagnetic wave absorption in the whole X-band. Meng Y; Li G; Tang H; Lu X; Lu S; Lu H; Ma Y; Xie C; Wu Y; Zi Z Dalton Trans; 2022 Nov; 51(45):17466-17480. PubMed ID: 36330864 [TBL] [Abstract][Full Text] [Related]
23. Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. Yuan X; Wang R; Huang W; Kong L; Guo S; Cheng L ACS Appl Mater Interfaces; 2020 Mar; 12(11):13208-13216. PubMed ID: 32092255 [TBL] [Abstract][Full Text] [Related]
24. Optimal electrical conductivity and interfacial polarization induced by loaded nanoparticles on carbon nanotubes for excellent electromagnetic wave absorption performance. Wen B; Zhang J; Yang G; Jing D; Yin X; Fan L; Salman Nasir M; Ding S J Colloid Interface Sci; 2022 Nov; 626():759-767. PubMed ID: 35820211 [TBL] [Abstract][Full Text] [Related]
25. Polyimide-based porous carbon and cobalt nanoparticle composites as high-performance electromagnetic wave absorbers. Yu W; Lin J; Zhao Z; Fang J; Wang Z; Huang J; Min Y RSC Adv; 2024 Mar; 14(14):9716-9724. PubMed ID: 38525061 [TBL] [Abstract][Full Text] [Related]
26. Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance. Wen B; Miao Y; Zhang Z; Li N; Xiao J; Li Y; Feng J; Ding S; Yang G Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063721 [TBL] [Abstract][Full Text] [Related]
27. Controllable adjustment of cavity of core-shelled Co Wen J; Li X; Chen G; Wang Z; Zhou X; Wu H J Colloid Interface Sci; 2021 Jul; 594():424-434. PubMed ID: 33774398 [TBL] [Abstract][Full Text] [Related]
28. High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH Zhang X; Qiao J; Zhao J; Xu D; Wang F; Liu C; Jiang Y; Wu L; Cui P; Lv L; Wang Q; Liu W; Wang Z; Liu J ACS Appl Mater Interfaces; 2019 Oct; 11(39):35959-35968. PubMed ID: 31525942 [TBL] [Abstract][Full Text] [Related]
29. Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent. Wang Y; Di X; Gao X; Wu X Nanotechnology; 2020 Sep; 31(39):395710. PubMed ID: 32470960 [TBL] [Abstract][Full Text] [Related]
30. Metal-Organic Framework Derived Hierarchical Co/C@V Zhou C; Wu C; Liu D; Yan M Chemistry; 2019 Feb; 25(9):2234-2241. PubMed ID: 30521116 [TBL] [Abstract][Full Text] [Related]
31. Restricted growth of molybdenum carbide nanoparticles in hierarchically porous nitrogen-doped carbon matrix for boosting electromagnetic wave absorption performance. Li Q; Liu L; Kimura H; Zhang X; Liu X; Xie X; Sun X; Xu C; Du W; Hou C J Colloid Interface Sci; 2024 Feb; 655():634-642. PubMed ID: 37956550 [TBL] [Abstract][Full Text] [Related]
32. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. Zheng J; He W; Hang T; Sun Z; Li Z; Jiang S; Li X; E S; Chen Y J Colloid Interface Sci; 2022 Dec; 628(Pt B):261-270. PubMed ID: 35998452 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of flower-like CoFe/C composites derived from ferrocene-based metal-organic frameworks: an Wang X; Zhang X; Lu J; Liu Z Nanoscale; 2024 Oct; 16(40):18952-18961. PubMed ID: 39292146 [TBL] [Abstract][Full Text] [Related]
34. In Situ Confined Bimetallic Metal-Organic Framework Derived Nanostructure within 3D Interconnected Bamboo-like Carbon Nanotube Networks for Boosting Electromagnetic Wave Absorbing Performances. Xu X; Ran F; Lai H; Cheng Z; Lv T; Shao L; Liu Y ACS Appl Mater Interfaces; 2019 Oct; 11(39):35999-36009. PubMed ID: 31498593 [TBL] [Abstract][Full Text] [Related]
35. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: effect of composition. Liu W; Pan J; Ji G; Liang X; Cheng Y; Quan B; Du Y Dalton Trans; 2017 Mar; 46(11):3700-3709. PubMed ID: 28256670 [TBL] [Abstract][Full Text] [Related]
36. Synergetic Dielectric and Magnetic Losses of a Core-Shell Co/MnO/C Nanocomplex toward Highly Efficient Microwave Absorption. Miao P; Yu Z; Chen W; Zhou R; Zhao W; Chen KJ; Kong J Inorg Chem; 2022 Jan; 61(3):1787-1796. PubMed ID: 34991312 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of porous carbon embedded with NiCo/CoNiO Zhou X; Jia Z; Feng A; Qu S; Wang X; Liu X; Wang B; Wu G J Colloid Interface Sci; 2020 Sep; 575():130-139. PubMed ID: 32361229 [TBL] [Abstract][Full Text] [Related]
38. Toward Enhancing Performance of Electromagnetic Wave Absorption for Conductive Metal-Organic Frameworks: Nanostructure Engineering or Crystal Morphology Controlling. Wang X; Zhang X; He A; Guo J; Liu Z Inorg Chem; 2024 Apr; 63(15):6948-6956. PubMed ID: 38575907 [TBL] [Abstract][Full Text] [Related]
39. A Hybrid Perovskite-Based Electromagnetic Wave Absorber with Enhanced Conduction Loss and Interfacial Polarization through Carbon Sphere Embedding. Lian X; Yao Y; Xiong Z; Duan Y; Wang J; Fu S; Dai Y; Zhou W; Zhang Z Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404293 [TBL] [Abstract][Full Text] [Related]
40. Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO Cai R; Zheng W; Yang P; Rao J; Huang X; Wang D; Du Z; Yao K; Zhang Y Molecules; 2022 Jun; 27(12):. PubMed ID: 35744883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]