These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 3411983)

  • 61. Hemodynamic effects of balloon obstruction of the abdominal aorta and superior vena caval-distal aortic shunting in dogs with myocardial infarction and shock.
    KUHN LA; GRUBER FL; FRANKEL A
    Am J Cardiol; 1961 Feb; 7():218-26. PubMed ID: 13754957
    [No Abstract]   [Full Text] [Related]  

  • 62. Dual-pump support in the inferior and superior vena cavae of a patient-specific fontan physiology.
    Throckmorton AL; Lopez-Isaza S; Moskowitz W
    Artif Organs; 2013 Jun; 37(6):513-22. PubMed ID: 23692310
    [TBL] [Abstract][Full Text] [Related]  

  • 63. COLLATERAL VASCULAR PATHWAYS DURING EXPERIMENTAL OBSTRUCTION OF AORTA AND INFERIOR VENA CAVA.
    GRUPP G; GRUPP IL; SPITZ HB
    Am J Roentgenol Radium Ther Nucl Med; 1965 May; 94():159-71. PubMed ID: 14281851
    [No Abstract]   [Full Text] [Related]  

  • 64. The right inferior phrenic artery: path of its ascending branch at the vena caval foramen.
    Townend RE; McConnell P
    Clin Anat; 2012 Jul; 25(5):656-8. PubMed ID: 22038858
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anterior vena caval oxygen profiles in a deep-diving California sea lion: arteriovenous shunts, a central venous oxygen store and oxygenation during lung collapse.
    Tift MS; Hückstädt LA; Ponganis PJ
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29084854
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Peculiarities of Blood Flow Changes in Venae Cavae during Experimental Pulmonary Embolism.
    Evlakhov VI; Poyassov IZ; Shaidakov EV
    Bull Exp Biol Med; 2016 Oct; 161(6):759-762. PubMed ID: 27785641
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changes of blood flow, oxygen tension, action potential and vascular permeability induced by arterial ischemia or venous congestion on the spinal cord in canine model.
    Kobayashi S; Yoshizawa H; Shimada S; Guerrero AR; Miyachi M
    J Orthop Res; 2013 Jan; 31(1):139-46. PubMed ID: 22912247
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Inferior vena caval occlusion-syndrom. Pathophysiology and clinical significance (author's transl)].
    Künzel W
    Z Geburtshilfe Perinatol; 1977 Jun; 181(3):135-57. PubMed ID: 407734
    [No Abstract]   [Full Text] [Related]  

  • 69. Studies on the response of the transplanted kidney and the transplanted adrenal gland to thoracic inferior vena caval constriction.
    CARPENTER CC; DAVIS JO; HOLMAN JE; AYERS CR; BAHN RC
    J Clin Invest; 1961 Feb; 40(2):196-204. PubMed ID: 13690960
    [No Abstract]   [Full Text] [Related]  

  • 70. Real-time monitoring of spinal cord blood flow with a novel sensor mounted on a cerebrospinal fluid drainage catheter in an animal model.
    Hayatsu Y; Kawamoto S; Matsunaga T; Haga Y; Saiki Y
    J Thorac Cardiovasc Surg; 2014 Oct; 148(4):1726-31. PubMed ID: 24836994
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamics of nitroglycerin-induced changes in vena cava flows and right atrial pressure.
    Tkachenko BI; Evlakhov VI; Poyasov IZ
    Bull Exp Biol Med; 2003 Aug; 136(2):107-9. PubMed ID: 14631483
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Peri-anhepatic phase oxygen kinetics in porcine liver transplantation.
    Tang GJ; Shann TY; Lu HC; Lin BS; Lui WY; Chan KH; Lee TY; P'eng FK
    Zhonghua Yi Xue Za Zhi (Taipei); 1999 May; 62(5):285-93. PubMed ID: 10389283
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of inspiration on inferior vena caval blood flow in dogs.
    Lloyd TC
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Dec; 55(6):1701-8. PubMed ID: 6662760
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections.
    de Leval MR; Dubini G; Migliavacca F; Jalali H; Camporini G; Redington A; Pietrabissa R
    J Thorac Cardiovasc Surg; 1996 Mar; 111(3):502-13. PubMed ID: 8601964
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanism of hemodynamic responses to occlusion of the descending thoracic aorta.
    Stokland O; Miller MM; Ilebekk A; Kiil F
    Am J Physiol; 1980 Apr; 238(4):H423-9. PubMed ID: 7377312
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Experimental evaluation of portal venous pulsatile flow synchronized with heartbeat intervals: effects of vascular clamping on portal hemodynamics.
    Nihei Y; Sasanuma H; Yasuda Y
    J Med Ultrason (2001); 2013 Jan; 40(1):9-18. PubMed ID: 27276919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Haemodynamic effects of thoracic epidural anaesthesia during proximal aortic cross-clamping in pigs.
    Aadahl P; Saether OD; Stenseth R; Myhre HO
    Acta Anaesthesiol Scand; 1995 Jan; 39(1):23-7. PubMed ID: 7725879
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs.
    Edelstone DI; Rudolph AM
    Am J Physiol; 1979 Dec; 237(6):H724-9. PubMed ID: 517672
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An investigation of the relationship between portal venous pressure and inferior vena caval and portal venous oxygen saturations.
    WOMACK NA; PETERS RM
    Ann Surg; 1957 Oct; 146(4):691-9. PubMed ID: 13470759
    [No Abstract]   [Full Text] [Related]  

  • 80. The effects of adrenaline and noradrenaline on venous return and regional blood flows in the anaesthetized cat with special reference to intestinal blood flow.
    Greenway CV; Lawson AE
    J Physiol; 1966 Oct; 186(3):579-95. PubMed ID: 5972154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.