These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34119926)

  • 41. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase.
    Zhang L; Rylott EL; Bruce NC; Strand SE
    Plant Mol Biol; 2017 Sep; 95(1-2):99-109. PubMed ID: 28762129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effectiveness of urea in enhancing the extractability of 2,4,6-trinitrotoluene from chemically variant soils.
    Das P; Sarkar D; Makris KC; Punamiya P; Datta R
    Chemosphere; 2013 Nov; 93(9):1811-7. PubMed ID: 23835412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium.
    Robertson BK; Jjemba PK
    Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.
    Chien CC; Kao CM; Chen DY; Chen SC; Chen CC
    Environ Toxicol Chem; 2014 May; 33(5):1059-63. PubMed ID: 24549634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Phytoremediation of polychlorinated biphenyls contaminated soil by leguminosae-gramineae intercropping: a field trial].
    Tu C; Teng Y; Luo YM; Pan C; Sun XH; Li ZG
    Huan Jing Ke Xue; 2010 Dec; 31(12):3062-6. PubMed ID: 21360900
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vetiver grass is capable of removing TNT from soil in the presence of urea.
    Das P; Datta R; Makris KC; Sarkar D
    Environ Pollut; 2010 May; 158(5):1980-3. PubMed ID: 20047780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology?
    Rylott EL; Johnston EJ; Bruce NC
    J Exp Bot; 2015 Nov; 66(21):6519-33. PubMed ID: 26283045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B" (RDX/TNT) in amended soil.
    Ali A; Zinnert JC; Muthukumar B; Peng Y; Chung SM; Stewart CN
    Environ Sci Pollut Res Int; 2014; 21(13):8261-70. PubMed ID: 24687782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips.
    Erkelens M; Adetutu EM; Taha M; Tudararo-Aherobo L; Antiabong J; Provatas A; Ball AS
    J Environ Manage; 2012 Nov; 110():69-76. PubMed ID: 22728982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms.
    Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR
    Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil.
    Muter O; Potapova K; Limane B; Sproge K; Jakobsone I; Cepurnieks G; Bartkevics V
    J Environ Manage; 2012 May; 98():51-5. PubMed ID: 22245864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems.
    Breitung J; Bruns-Nagel D; Steinbach K; Kaminski L; Gemsa D; von Löw E
    Appl Microbiol Biotechnol; 1996 Feb; 44(6):795-800. PubMed ID: 8867637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Growth and development of smooth bromegrass and tall fescue in TNT-contaminated soil.
    Krishnan G; Horst GL; Darnell S; Powers WL
    Environ Pollut; 2000 Jan; 107(1):109-16. PubMed ID: 15093014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.
    Wang G; Wang Y; Hu S; Deng N; Wu F
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10107-15. PubMed ID: 25687612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia.
    Labidi M; Ahmad D; Halasz A; Hawari J
    Can J Microbiol; 2001 Jun; 47(6):559-66. PubMed ID: 11467731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils.
    Newcombe DA; Crawford RL
    Biodegradation; 2007 Dec; 18(6):741-54. PubMed ID: 17273913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight.
    Ramos JL; González-Pérez MM; Caballero A; van Dillewijn P
    Curr Opin Biotechnol; 2005 Jun; 16(3):275-81. PubMed ID: 15961028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential of activated carbon to decrease 2,4,6-trinitrotoluene toxicity and accelerate soil decontamination.
    Vasilyeva GK; Kreslavski VD; Oh BT; Shea PJ
    Environ Toxicol Chem; 2001 May; 20(5):965-71. PubMed ID: 11337885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes.
    Weiss M; Geyer R; Günther T; Kaestner M
    Environ Toxicol Chem; 2004 Sep; 23(9):2049-60. PubMed ID: 15378978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.