BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34120043)

  • 1. Metabolomic profile combined with transcriptomic analysis reveals the value of UV-C in improving the utilization of waste grape berries.
    Zhang K; Chen L; Wei M; Qiao H; Zhang S; Li Z; Fang Y; Chen K
    Food Chem; 2021 Nov; 363():130288. PubMed ID: 34120043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content.
    Villalobos-González L; Peña-Neira A; Ibáñez F; Pastenes C
    Plant Physiol Biochem; 2016 Aug; 105():213-223. PubMed ID: 27116369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.
    Sweetman C; Wong DC; Ford CM; Drew DP
    BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin.
    He L; Meng N; Castellarin SD; Wang Y; Sun Q; Li XY; Dong ZG; Tang XP; Duan CQ; Pan QH
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries.
    Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J
    BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size.
    Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD
    BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries.
    Oraei M; Panahirad S; Zaare-Nahandi F; Gohari G
    J Sci Food Agric; 2019 Oct; 99(13):5946-5952. PubMed ID: 31206683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate.
    He L; Xu XQ; Wang Y; Chen WK; Sun RZ; Cheng G; Liu B; Chen W; Duan CQ; Wang J; Pan QH
    BMC Plant Biol; 2020 Feb; 20(1):59. PubMed ID: 32019505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels.
    Gouthu S; Deluc LG
    BMC Plant Biol; 2015 Feb; 15():46. PubMed ID: 25848949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin.
    Chai L; Li Y; Chen S; Perl A; Zhao F; Ma H
    Plant Sci; 2014 Dec; 229():215-224. PubMed ID: 25443848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and expression analysis of invertase family genes during grape (Vitis vinifera L.) berry development under CPPU and GA treatment.
    Du CL; Cai CL; Lu Y; Li YM; Xie ZS
    Mol Genet Genomics; 2023 May; 298(3):777-789. PubMed ID: 37041390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions.
    Wen YQ; Zhong GY; Gao Y; Lan YB; Duan CQ; Pan QH
    BMC Plant Biol; 2015 Oct; 15():240. PubMed ID: 26444528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.
    Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN
    Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABA and GA
    Murcia G; Fontana A; Pontin M; Baraldi R; Bertazza G; Piccoli PN
    Phytochemistry; 2017 Mar; 135():34-52. PubMed ID: 27998613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries.
    Gouthu S; O'Neil ST; Di Y; Ansarolia M; Megraw M; Deluc LG
    J Exp Bot; 2014 Nov; 65(20):5889-902. PubMed ID: 25135520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development.
    Zheng T; Dong T; Haider MS; Jin H; Jia H; Fang J
    J Agric Food Chem; 2020 Oct; 68(43):11987-11996. PubMed ID: 33059448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening.
    Leng F; Cao J; Ge Z; Wang Y; Zhao C; Wang S; Li X; Zhang Y; Sun C
    J Agric Food Chem; 2020 Aug; 68(34):9090-9099. PubMed ID: 32806110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of VvSPL18 and Its Expression in Response to Exogenous Hormones during Grape Berry Development and Ripening.
    Xie Z; Su Z; Wang W; Guan L; Bai Y; Zhu X; Wang X; Jia H; Fang J; Wang C
    Cytogenet Genome Res; 2019; 159(2):97-108. PubMed ID: 31760391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.