These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34120089)

  • 1. An aqueous-based process to bioactivate poly(ε-caprolactone)/mesoporous bioglass composite surfaces by prebiotic chemistry-inspired polymer coatings for biomedical applications.
    Cheng SY; Chiang YL; Chang YH; Thissen H; Tsai SW
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111913. PubMed ID: 34120089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesive Prebiotic Chemistry Inspired Coatings for Bone Contacting Applications.
    Menzies DJ; Ang A; Thissen H; Evans RA
    ACS Biomater Sci Eng; 2017 May; 3(5):793-806. PubMed ID: 33440500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors.
    Niu Y; Dong W; Guo H; Deng Y; Guo L; An X; He D; Wei J; Li M
    Int J Nanomedicine; 2014; 9():2665-75. PubMed ID: 24920903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive and mechanically strong Bioglass-poly(D,L-lactic acid) composite coatings on surgical sutures.
    Chen QZ; Blaker JJ; Boccaccini AR
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):354-63. PubMed ID: 16161126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.
    Dziadek M; Pawlik J; Menaszek E; Stodolak-Zych E; Cholewa-Kowalska K
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1580-93. PubMed ID: 25533304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.
    Wang S; Li Y; Zhao R; Jin T; Zhang L; Li X
    Int J Biol Macromol; 2017 Nov; 104(Pt A):708-715. PubMed ID: 28645765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition.
    Motealleh A; Eqtesadi S; Pajares A; Miranda P
    J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure.
    Charles LF; Shaw MT; Olson JR; Wei M
    J Mater Sci Mater Med; 2010 Jun; 21(6):1845-54. PubMed ID: 20238147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review.
    Stepanova M; Korzhikova-Vlakh E
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].
    Fang W; Zeng SG; Gao WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M
    Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Conde G; de Carvalho JRG; Dias PDP; Moranza HG; Montanhim GL; Ribeiro JO; Chinelatto MA; Moraes PC; Taboga SR; Bertolo PHL; Gonçalves Funnicelli MI; Pinheiro DG; Ferraz GC
    Biomed Phys Eng Express; 2021 Mar; 7(3):. PubMed ID: 33652429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications.
    Terzopoulou Z; Baciu D; Gounari E; Steriotis T; Charalambopoulou G; Tzetzis D; Bikiaris D
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31450742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
    Tian P; Xu D; Liu X
    Colloids Surf B Biointerfaces; 2016 May; 141():327-337. PubMed ID: 26874118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.