These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 34120216)
1. DNA translocation through pH-dependent soft nanopores. Yousefi A; Ganjizade A; Ashrafizadeh SN Eur Biophys J; 2021 Sep; 50(6):905-914. PubMed ID: 34120216 [TBL] [Abstract][Full Text] [Related]
2. Significant alteration in DNA electrophoretic translocation velocity through soft nanopores by ion partitioning. Ganjizade A; Ashrafizadeh SN; Sadeghi A Anal Chim Acta; 2019 Nov; 1080():66-74. PubMed ID: 31409476 [TBL] [Abstract][Full Text] [Related]
3. Ion-Solvent Interactions under Confinement Hold the Key to Tuning the DNA Translocation Speeds in Polyelectrolyte-Functionalized Nanopores. Kumar A; Bakli C; Chakraborty S Langmuir; 2024 Apr; 40(14):7300-7309. PubMed ID: 38536237 [TBL] [Abstract][Full Text] [Related]
4. DNA translocation through polyelectrolyte-modified nanopores: An analytical approximation. Das PK Electrophoresis; 2018 Jun; 39(11):1370-1374. PubMed ID: 29542143 [TBL] [Abstract][Full Text] [Related]
5. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810 [TBL] [Abstract][Full Text] [Related]
6. Regulating DNA translocation through functionalized soft nanopores. Yeh LH; Zhang M; Qian S; Hsu JP Nanoscale; 2012 Apr; 4(8):2685-93. PubMed ID: 22422141 [TBL] [Abstract][Full Text] [Related]
7. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner. Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659 [TBL] [Abstract][Full Text] [Related]
9. Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Yeh LH; Zhang M; Hu N; Joo SW; Qian S; Hsu JP Nanoscale; 2012 Aug; 4(16):5169-77. PubMed ID: 22802160 [TBL] [Abstract][Full Text] [Related]
10. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822 [TBL] [Abstract][Full Text] [Related]
11. Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient. Chen YT; Hsu JP J Colloid Interface Sci; 2022 Jan; 605():571-581. PubMed ID: 34340041 [TBL] [Abstract][Full Text] [Related]
12. Simulation of pH-Regulated Electrokinetic Ion Transport in Nanopores with Polyelectrolyte Brushes. Qiu H; Wang X; Choi A; Zhao W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4194-4197. PubMed ID: 30441279 [TBL] [Abstract][Full Text] [Related]
13. Electrophoresis of soft particles with hydrophobic inner core grafted with pH-regulated and highly charged polyelectrolyte layer. Maurya SK; Sarkar S; Mondal HK; Ohshima H; Gopmandal PP Electrophoresis; 2022 Mar; 43(5-6):757-766. PubMed ID: 34398491 [TBL] [Abstract][Full Text] [Related]
14. Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores. Li M; Muthukumar M J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38411234 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic flow modulation and dispersion of uncharged solutes in soft nanochannel. Saha B; Chowdhury S; Sarkar S; Gopmandal PP Soft Matter; 2024 Aug; 20(32):6458-6489. PubMed ID: 39091251 [TBL] [Abstract][Full Text] [Related]
16. Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores. Gonzalez Solveyra E; Perez Sirkin YA; Tagliazucchi M; Szleifer I ACS Nano; 2024 Apr; 18(15):10427-10438. PubMed ID: 38556978 [TBL] [Abstract][Full Text] [Related]
17. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels. Seifollahi Z; Ashrafizadeh SN Colloids Surf B Biointerfaces; 2022 Aug; 216():112545. PubMed ID: 35561637 [TBL] [Abstract][Full Text] [Related]
18. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification. Khatibi M; Ashrafizadeh SN; Sadeghi A Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743 [TBL] [Abstract][Full Text] [Related]
19. Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816 [TBL] [Abstract][Full Text] [Related]
20. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]