These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34120390)

  • 1. Theory of temperature-dependent consumer-resource interactions.
    Synodinos AD; Haegeman B; Sentis A; Montoya JM
    Ecol Lett; 2021 Aug; 24(8):1539-1555. PubMed ID: 34120390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal variability alters the impact of climate warming on consumer-resource systems.
    Fey SB; Vasseur DA
    Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.
    Dell AI; Pawar S; Savage VM
    J Anim Ecol; 2014 Jan; 83(1):70-84. PubMed ID: 23692182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming.
    Bideault A; Galiana N; Zelnik YR; Gravel D; Loreau M; Barbier M; Sentis A
    Glob Chang Biol; 2021 Jan; 27(2):257-269. PubMed ID: 33084162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-evolutionary consequences of habitat warming and fragmentation in communities.
    Faillace CA; Sentis A; Montoya JM
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1933-1950. PubMed ID: 33998139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioenergetic framework for the temperature dependence of trophic interactions.
    Gilbert B; Tunney TD; McCann KS; DeLong JP; Vasseur DA; Savage V; Shurin JB; Dell AI; Barton BT; Harley CD; Kharouba HM; Kratina P; Blanchard JL; Clements C; Winder M; Greig HS; O'Connor MI
    Ecol Lett; 2014 Aug; 17(8):902-14. PubMed ID: 24894409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores.
    Réveillon T; Rota T; Chauvet É; Lecerf A; Sentis A
    J Anim Ecol; 2022 Oct; 91(10):1975-1987. PubMed ID: 35471565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temperature on consumer-resource interactions.
    Amarasekare P
    J Anim Ecol; 2015 May; 84(3):665-679. PubMed ID: 25412342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of warming revealed by linking resource growth rates with consumer functional responses.
    West DC; Post DM
    J Anim Ecol; 2016 May; 85(3):671-80. PubMed ID: 26781835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic interactions modify the temperature dependence of community biomass and ecosystem function.
    Garzke J; Connor SJ; Sommer U; O'Connor MI
    PLoS Biol; 2019 Jun; 17(6):e2006806. PubMed ID: 31181076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual variation and interactions explain food web responses to global warming.
    Gårdmark A; Huss M
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190449. PubMed ID: 33131431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming.
    Lindmark M; Audzijonyte A; Blanchard JL; Gårdmark A
    Glob Chang Biol; 2022 Nov; 28(21):6239-6253. PubMed ID: 35822557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics.
    Vasseur DA; McCann KS
    Am Nat; 2005 Aug; 166(2):184-98. PubMed ID: 16032573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-size responses alter food chain persistence across environmental gradients.
    Sentis A; Binzer A; Boukal DS
    Ecol Lett; 2017 Jul; 20(7):852-862. PubMed ID: 28544190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2017 Jul; 98(7):1797-1806. PubMed ID: 28402586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-up effects of species diversity on the functioning and stability of food webs.
    Narwani A; Mazumder A
    J Anim Ecol; 2012 May; 81(3):701-13. PubMed ID: 22325003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent temperature dependence of functional response parameters and their use in predicting population abundance.
    Archer LC; Sohlström EH; Gallo B; Jochum M; Woodward G; Kordas RL; Rall BC; O'Gorman EJ
    J Anim Ecol; 2019 Nov; 88(11):1670-1683. PubMed ID: 31283002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II.
    Daugaard U; Petchey OL; Pennekamp F
    J Anim Ecol; 2019 Oct; 88(10):1575-1586. PubMed ID: 31257583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams.
    Schaum CE; ; Ffrench-Constant R; Lowe C; Ólafsson JS; Padfield D; Yvon-Durocher G
    Glob Chang Biol; 2018 Apr; 24(4):1793-1803. PubMed ID: 29281766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.