These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34121149)

  • 1. Separation of CH
    Ghiasi M; Zeinali P; Gholami S; Zahedi M
    J Mol Model; 2021 Jun; 27(7):201. PubMed ID: 34121149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of CO
    Mahnaee S; López MJ; Alonso JA
    Phys Chem Chem Phys; 2024 Jun; 26(22):15916-15926. PubMed ID: 38805377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics.
    Liu H; Dai S; Jiang DE
    Nanoscale; 2013 Oct; 5(20):9984-7. PubMed ID: 23990030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-induced clustering of CO
    Meconi GM; Zangi R
    Phys Chem Chem Phys; 2020 Sep; 22(37):21031-21041. PubMed ID: 32926038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.
    Esfandiarpoor S; Fazli M; Ganji MD
    Sci Rep; 2017 Nov; 7(1):16561. PubMed ID: 29185458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An
    Sarmah K; Purkayastha SK; Kalita AJ; Guha AK
    Phys Chem Chem Phys; 2023 Feb; 25(6):5174-5182. PubMed ID: 36723082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.
    Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding.
    Liu Q; Yang Z; Liu G; Sun L; Xu R; Zhong J
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422148
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF.
    Khalili AA; Yeganegi S
    J Mol Graph Model; 2020 Dec; 101():107731. PubMed ID: 32931982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.