These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34121315)

  • 1. Surface Charge Regulated Asymmetric Ion Transport in Nanoconfined Space.
    Wu Y; Qian Y; Niu B; Chen J; He X; Yang L; Kong XY; Zhao Y; Lin X; Zhou T; Jiang L; Wen L
    Small; 2021 Jul; 17(28):e2101099. PubMed ID: 34121315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.
    Lin YC; Chen HH; Chu CW; Yeh LH
    Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions.
    Zhang X; Wen Q; Wang L; Ding L; Yang J; Ji D; Zhang Y; Jiang L; Guo W
    ACS Nano; 2019 Apr; 13(4):4238-4245. PubMed ID: 30865824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks.
    Cheng H; Zhou Y; Feng Y; Geng W; Liu Q; Guo W; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting.
    Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH
    ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting.
    Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L
    Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Response of Ion Transport in Nanoconfined Electrolytes.
    Zhang Z; Li C; Zhang J; Eikerling M; Huang J
    Nano Lett; 2023 Dec; 23(23):10703-10709. PubMed ID: 37846923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Lithium Insertion with Electrostatic Nanoconfinement in a Lithography Patterned Precision Cell.
    Li SX; Kim NS; McKelvey K; Liu C; White HS; Rubloff GW; Lee SB; Reed MA
    ACS Nano; 2019 Jul; 13(7):8481-8489. PubMed ID: 31276376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoconfined Space: Revisiting the Charge Storage Mechanism of Electric Double Layer Capacitors.
    Tan J; Li Z; Ye M; Shen J
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37259-37269. PubMed ID: 35951420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-Assembled Multi-Level Asymmetric Mesochannels for Coupled Accelerated Dual-Ion Selective Transport.
    Zhou S; Xie L; Zhang X; Yan M; Zeng H; Liang K; Jiang L; Kong B
    Adv Mater; 2023 Feb; 35(7):e2208903. PubMed ID: 36434817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of charge inversion on nanoconfined flow of multivalent ionic solutions.
    Rojano A; Córdoba A; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2022 Feb; 24(8):4935-4943. PubMed ID: 35138314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion Concentration-Dependent Surface Charge Density Inside a Nanopore.
    Zhan L; Zhang Z; Zheng F; Liu W; Zhang Y; Sha J; Chen Y
    J Phys Chem Lett; 2023 Dec; 14(50):11536-11542. PubMed ID: 38095320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks.
    Lu J; Jiang Y; Xiong T; Yu P; Jiang W; Mao L
    Anal Chem; 2022 Mar; 94(10):4328-4334. PubMed ID: 35245019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks.
    Lu J; Zhang H; Hu X; Qian B; Hou J; Han L; Zhu Y; Sun C; Jiang L; Wang H
    ACS Nano; 2021 Jan; 15(1):1240-1249. PubMed ID: 33332960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Regulated Nanoconfined Channels for Highly Effective Mechanical-Electrical Conversion in Proton Battery-Type Self-Powered Pressure Sensor.
    Zhang Q; Lei D; Shi J; Ren Z; Yin J; Jia P; Lu W; Gao Y; Liu N
    Adv Mater; 2023 Dec; 35(52):e2308795. PubMed ID: 37967569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.
    Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X
    Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.