These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34121527)

  • 1. Macrophyte and indigenous bacterial co-remediation process for pentachlorophenol removal from wastewater.
    Ammeri RW; Hassen W; Hidri Y; Di Rauso Simeone G; Hassen A
    Int J Phytoremediation; 2022; 24(3):271-282. PubMed ID: 34121527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of combined tools: adsorption, bioaugmentation and phytoremediation for pesticides removal from wastewater.
    Werheni Ammeri R; Eturki S; Simeone GDR; Ben Moussa K; Hassen W; Moussa M; Hassen A
    Int J Phytoremediation; 2023; 25(11):1474-1487. PubMed ID: 36606367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of pentachlorophenol from contaminated wastewater using phytoremediation and bioaugmentation processes.
    Werheni Ammeri R; Kraiem K; Riahi K; Eturki S; Hassen W; Mehri I; Hassen A
    Water Sci Technol; 2021 Nov; 84(10-11):3091-3103. PubMed ID: 34850714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaugmentation and phytoremediation wastewater treatment process as a viable alternative for pesticides removal: case of pentachlorophenol.
    Ammeri RW; Kouki S; Hassen W; Oueslati M; Sadfi-Zouaoui N; Hassen A
    J Environ Health Sci Eng; 2023 Dec; 21(2):373-387. PubMed ID: 37869599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential.
    Nabuyanda MM; van Bruggen J; Kelderman P; Irvine K
    J Environ Manage; 2019 Apr; 236():510-518. PubMed ID: 30771671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline water quality of municipal ponds and metal removal ability of Typha latifolia L. from sewage and industrial wastewaters.
    Bokhari SH; Mahmood-Ul-Hassan M; Riaz Y; Munir A; Ali Z
    Int J Phytoremediation; 2017 Dec; 19(12):1077-1084. PubMed ID: 28678606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel.
    Sricoth T; Meeinkuirt W; Pichtel J; Taeprayoon P; Saengwilai P
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5344-5358. PubMed ID: 29209971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community.
    Cea M; Jorquera M; Rubilar O; Langer H; Tortella G; Diez MC
    J Hazard Mater; 2010 Sep; 181(1-3):315-23. PubMed ID: 20605683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial consortium biotransformation of pentachlorophenol contaminated wastewater.
    Ammeri RW; Di Rauso Simeone G; Hassen W; Ibrahim C; Ammar RB; Hassen A
    Arch Microbiol; 2021 Dec; 203(10):6231-6243. PubMed ID: 34591145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of pentachlorophenol by an indigenous Bacillus cereus AOA-CPS1 isolated from wastewater effluent in Durban, South Africa.
    Aregbesola OA; Mokoena MP; Olaniran AO
    Biodegradation; 2020 Dec; 31(4-6):369-383. PubMed ID: 33011889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil.
    Barbeau C; Deschênes L; Karamanev D; Comeau Y; Samson R
    Appl Microbiol Biotechnol; 1997 Dec; 48(6):745-52. PubMed ID: 9457802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils.
    Hechmi N; Aissa NB; Abdenaceur H; Jedidi N
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1304-13. PubMed ID: 23900950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined bioaugmentation and biostimulation techniques in bioremediation of pentachlorophenol contaminated forest soil.
    Werheni Ammeri R; Di Rauso Simeone G; Hidri Y; Abassi MS; Mehri I; Costa S; Hassen A; Rao MA
    Chemosphere; 2022 Mar; 290():133359. PubMed ID: 34933026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of micropollutants by
    Lei Y; Carlucci L; Rijnaarts H; Langenhoff A
    Int J Phytoremediation; 2023; 25(1):82-88. PubMed ID: 35414315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent.
    Chandanshive VV; Rane NR; Tamboli AS; Gholave AR; Khandare RV; Govindwar SP
    J Hazard Mater; 2017 Sep; 338():47-56. PubMed ID: 28531658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569.
    Ammeri RW; Hidri Y; Hassen W; Mehri I; Khlifi N; Hassen A
    Arch Microbiol; 2021 Oct; 203(8):5141-5152. PubMed ID: 34327555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.