These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34121527)

  • 21. Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system.
    Hejna M; Moscatelli A; Stroppa N; Onelli E; Pilu S; Baldi A; Rossi L
    Chemosphere; 2020 Feb; 241():125018. PubMed ID: 31683415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
    Gomes MV; de Souza RR; Teles VS; Araújo Mendes É
    Chemosphere; 2014 May; 103():228-33. PubMed ID: 24369743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals.
    Mills T; Arnold B; Sivakumaran S; Northcott G; Vogeler I; Robinson B; Norling C; Leonil D
    J Environ Manage; 2006 May; 79(3):232-41. PubMed ID: 16202508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L.
    Al-Baldawi IA
    Ecotoxicol Environ Saf; 2018 Jan; 147():260-265. PubMed ID: 28850808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth.
    Ahmad A
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5777-5786. PubMed ID: 34431049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation efficiency of a pcp-contaminated soil using four plant species as mono- and mixed cultures.
    Hechmi N; Aissa NB; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2014; 16(7-12):1241-56. PubMed ID: 24933915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant.
    Kao CM; Chai CT; Liu JK; Yeh TY; Chen KF; Chen SC
    Water Res; 2004 Feb; 38(3):663-72. PubMed ID: 14723935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723.
    Dams RI; Paton GI; Killham K
    Chemosphere; 2007 Jun; 68(5):864-70. PubMed ID: 17376504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater.
    Schmidt LM; Delfino JJ; Preston JF; St Laurent G
    Chemosphere; 1999 May; 38(12):2897-912. PubMed ID: 10214718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands.
    Anning AK; Korsah PE; Addo-Fordjour P
    Int J Phytoremediation; 2013; 15(5):452-64. PubMed ID: 23488171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of bioaugmentation with a consortium of bacteria on the remediation of wastewater-containing hydrocarbons.
    Domde P; Kapley A; Purohit HJ
    Environ Sci Pollut Res Int; 2007 Jan; 14(1):7-11. PubMed ID: 17352122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of pentachlorophenol by pure and mixed cultures in two different soils.
    Pu X; Cutright TJ
    Environ Sci Pollut Res Int; 2007 Jun; 14(4):244-50. PubMed ID: 17668821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils.
    Ford CI; Walter M; Northcott GL; Di HJ; Cameron KC; Trower T
    J Environ Qual; 2007; 36(6):1599-608. PubMed ID: 17940259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia.
    Alquwaizany AS; Hussain G; Al-Zarah AI
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39838-39846. PubMed ID: 35112245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.