These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34121630)

  • 21. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual lesion of angular gyrus disrupts the relationship between visuoproprioceptive weighting and realignment.
    Block H; Bastian A; Celnik P
    J Cogn Neurosci; 2013 Apr; 25(4):636-48. PubMed ID: 23249345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor and sensory disturbances induced by sensorimotor conflicts during passive and active movements in healthy participants.
    Brun C; Gagné M; McCabe CS; Mercier C
    PLoS One; 2018; 13(8):e0203206. PubMed ID: 30157264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity.
    Bellan V; Gilpin HR; Stanton TR; Dagsdóttir LK; Gallace A; Lorimer Moseley G
    Exp Brain Res; 2017 Feb; 235(2):447-455. PubMed ID: 27778047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The specificity of practice hypothesis in goal-directed movements: visual dominance or proprioception neglect?
    Toussaint L; Meugnot A; Badets A; Chesnet D; Proteau L
    Psychol Res; 2017 Mar; 81(2):407-414. PubMed ID: 26873383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback.
    Bardal EM; Roeleveld K; Ihlen E; Mork PJ
    J Electromyogr Kinesiol; 2016 Feb; 26():1-7. PubMed ID: 26790141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The respective contributions of visual and proprioceptive afferents to the mirror illusion in virtual reality.
    Giroux M; Barra J; Zrelli IE; Barraud PA; Cian C; Guerraz M
    PLoS One; 2018; 13(8):e0203086. PubMed ID: 30161207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy.
    Ghez C; Gordon J; Ghilardi MF
    J Neurophysiol; 1995 Jan; 73(1):361-72. PubMed ID: 7714578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removing own-limb visual input using mixed reality (MR) produces a "telescoping" illusion in healthy individuals.
    Thøgersen M; Hansen J; Arendt-Nielsen L; Flor H; Petrini L
    Behav Brain Res; 2018 Jul; 347():263-271. PubMed ID: 29551734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual feedback from a virtual body modulates motor illusion induced by tendon vibration.
    Fusco G; Tieri G; Aglioti SM
    Psychol Res; 2021 Apr; 85(3):926-938. PubMed ID: 32524205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The visual encoding of purely proprioceptive intermanual tasks is due to the need of transforming joint signals, not to their interhemispheric transfer.
    Arnoux L; Fromentin S; Farotto D; Beraneck M; McIntyre J; Tagliabue M
    J Neurophysiol; 2017 Sep; 118(3):1598-1608. PubMed ID: 28615330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Congruent visual and proprioceptive information results in a better encoding of initial hand position.
    Veilleux LN; Proteau L
    Exp Brain Res; 2011 Oct; 214(2):215-24. PubMed ID: 21837439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of limb crossing and limb congruency on multisensory integration in peripersonal space for the upper and lower extremities.
    van Elk M; Forget J; Blanke O
    Conscious Cogn; 2013 Jun; 22(2):545-55. PubMed ID: 23579198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proprioceptive performance of bilateral upper and lower limb joints: side-general and site-specific effects.
    Han J; Anson J; Waddington G; Adams R
    Exp Brain Res; 2013 May; 226(3):313-23. PubMed ID: 23423167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of vision and proprioception to arm movement planning in the vertical plane.
    Apker GA; Karimi CP; Buneo CA
    Neurosci Lett; 2011 Oct; 503(3):186-90. PubMed ID: 21889576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement.
    Manzone DM; Tremblay L
    J Neurophysiol; 2020 Sep; 124(3):802-814. PubMed ID: 32755335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual feedback of the non-moving limb improves active joint-position sense of the impaired limb in Spastic Hemiparetic Cerebral Palsy.
    Smorenburg AR; Ledebt A; Deconinck FJ; Savelsbergh GJ
    Res Dev Disabil; 2011; 32(3):1107-16. PubMed ID: 21306868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic upper limb proprioception in multidirectional shoulder instability.
    Barden JM; Balyk R; Raso VJ; Moreau M; Bagnall K
    Clin Orthop Relat Res; 2004 Mar; (420):181-9. PubMed ID: 15057095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.