These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34121656)

  • 1. Cortical signatures of precision grip force control in children, adolescents, and adults.
    Beck MM; Spedden ME; Dietz MJ; Karabanov AN; Christensen MS; Lundbye-Jensen J
    Elife; 2021 Jun; 10():. PubMed ID: 34121656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults.
    Spedden ME; Beck MM; Christensen MS; Dietz MJ; Karabanov AN; Geertsen SS; Nielsen JB; Lundbye-Jensen J
    Neuroimage; 2020 Sep; 218():116982. PubMed ID: 32450250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood.
    Beck MM; Spedden ME; Lundbye-Jensen J
    Sci Rep; 2021 Nov; 11(1):22870. PubMed ID: 34819532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parietofrontal network upregulation after motor stroke.
    Bönstrup M; Schulz R; Schön G; Cheng B; Feldheim J; Thomalla G; Gerloff C
    Neuroimage Clin; 2018; 18():720-729. PubMed ID: 29876261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.
    Bönstrup M; Schulz R; Feldheim J; Hummel FC; Gerloff C
    Neuroimage; 2016 Jan; 124(Pt A):498-508. PubMed ID: 26334836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation.
    Marneweck M; Barany DA; Santello M; Grafton ST
    J Neurosci; 2018 May; 38(20):4724-4737. PubMed ID: 29686047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential representation of dynamic and static power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Kollias SS
    Eur J Neurosci; 2010 Apr; 31(8):1483-91. PubMed ID: 20384781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal ganglia mechanisms underlying precision grip force control.
    Prodoehl J; Corcos DM; Vaillancourt DE
    Neurosci Biobehav Rev; 2009 Jun; 33(6):900-8. PubMed ID: 19428499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network dynamics engaged in the modulation of motor behavior in healthy subjects.
    Pool EM; Rehme AK; Fink GR; Eickhoff SB; Grefkes C
    Neuroimage; 2013 Nov; 82():68-76. PubMed ID: 23747288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in causal interactions between cortical motor regions during hand grip.
    Boudrias MH; Gonçalves CS; Penny WD; Park CH; Rossiter HE; Talelli P; Ward NS
    Neuroimage; 2012 Feb; 59(4):3398-405. PubMed ID: 22119651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human brain activity in the control of fine static precision grip forces: an fMRI study.
    Kuhtz-Buschbeck JP; Ehrsson HH; Forssberg H
    Eur J Neurosci; 2001 Jul; 14(2):382-90. PubMed ID: 11553288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder.
    Unruh KE; Martin LE; Magnon G; Vaillancourt DE; Sweeney JA; Mosconi MW
    J Neurophysiol; 2019 Oct; 122(4):1330-1341. PubMed ID: 31314644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential force scaling of fine-graded power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Meyer M; Kollias SS
    Hum Brain Mapp; 2009 Aug; 30(8):2453-65. PubMed ID: 19172654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel evolution of cortical areas involved in skilled hand use.
    Padberg J; Franca JG; Cooke DF; Soares JG; Rosa MG; Fiorani M; Gattass R; Krubitzer L
    J Neurosci; 2007 Sep; 27(38):10106-15. PubMed ID: 17881517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach.
    Bencivenga F; Sulpizio V; Tullo MG; Galati G
    Neuroimage; 2021 Apr; 230():117806. PubMed ID: 33524574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power and precision grip force control in three-to-five-year-old children: velocity control precedes amplitude control in development.
    Potter NL; Kent RD; Lindstrom MJ; Lazarus JA
    Exp Brain Res; 2006 Jun; 172(2):246-60. PubMed ID: 16432697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human EEG reveals distinct neural correlates of power and precision grasping types.
    Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR
    Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired grip-lift synergy in children with unilateral brain lesions.
    Forssberg H; Eliasson AC; Redon-Zouitenn C; Mercuri E; Dubowitz L
    Brain; 1999 Jun; 122 ( Pt 6)():1157-68. PubMed ID: 10356067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans.
    Davare M; Lemon R; Olivier E
    J Physiol; 2008 Jun; 586(11):2735-42. PubMed ID: 18403420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.