These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34122033)

  • 1. Grasping Embodiment: Haptic Feedback for Artificial Limbs.
    Moore CH; Corbin SF; Mayr R; Shockley K; Silva PL; Lorenz T
    Front Neurorobot; 2021; 15():662397. PubMed ID: 34122033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotactile Sensory Feedback Improves Embodiment of a Prosthetic Hand During Active Use.
    Shehata AW; Rehani M; Jassat ZE; Hebert JS
    Front Neurosci; 2020; 14():263. PubMed ID: 32273838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.
    Hellman RB; Chang E; Tanner J; Helms Tillery SI; Santos VJ
    Front Hum Neurosci; 2015; 9():26. PubMed ID: 25745391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations.
    D'Alonzo M; Clemente F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):450-7. PubMed ID: 25051556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic shared control improves neural efficiency during myoelectric prosthesis use.
    Thomas N; Miller AJ; Ayaz H; Brown JD
    Sci Rep; 2023 Jan; 13(1):484. PubMed ID: 36627340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use.
    Johnson JT; de Mari D; Doherty H; Hammond FL; Wheaton LA
    Exp Brain Res; 2022 May; 240(5):1387-1398. PubMed ID: 35257195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of invasive and non-invasive sensory feedback in upper limb prostheses.
    Svensson P; Wijk U; Björkman A; Antfolk C
    Expert Rev Med Devices; 2017 Jun; 14(6):439-447. PubMed ID: 28532184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin Stretch Haptic Feedback to Convey Closure Information in Anthropomorphic, Under-Actuated Upper Limb Soft Prostheses.
    Battaglia E; Clark JP; Bianchi M; Catalano MG; Bicchi A; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):508-520. PubMed ID: 31071053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Utility of Synthetic Reflexes and Haptic Feedback for Upper-Limb Prostheses in a Dexterous Task Without Direct Vision.
    Thomas N; Fazlollahi F; Kuchenbecker KJ; Brown JD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():169-179. PubMed ID: 36346869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of transcutaneous electrical nerve stimulation (TENS) to aid perceptual embodiment of prosthetic limbs.
    Mulvey MR; Fawkner HJ; Radford H; Johnson MI
    Med Hypotheses; 2009 Feb; 72(2):140-2. PubMed ID: 19026493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential experiences of embodiment between body-powered and myoelectric prosthesis users.
    Engdahl SM; Meehan SK; Gates DH
    Sci Rep; 2020 Sep; 10(1):15471. PubMed ID: 32963290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Home-Use of Sensory-Motor-Integrated Bidirectional Bionic Prosthetic Arms Promotes Functional, Perceptual, and Cognitive Changes.
    Schofield JS; Shell CE; Beckler DT; Thumser ZC; Marasco PD
    Front Neurosci; 2020; 14():120. PubMed ID: 32140096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of the impact of sEMG interfaces in enhancing embodiment of virtual myoelectric prostheses.
    Castañeda TS; Connan M; Capsi-Morales P; Beckerle P; Castellini C; Piazza C
    J Neuroeng Rehabil; 2024 Apr; 21(1):57. PubMed ID: 38627772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.
    Stepp CE; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2089-92. PubMed ID: 21095683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis.
    Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S
    J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.