BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34122396)

  • 1. Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in
    Kim MS; Kim HR; Jeong DE; Choi SK
    Front Microbiol; 2021; 12():691839. PubMed ID: 34122396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining biosynthetic gene clusters in Paenibacillus genomes to discover novel antibiotics.
    Kim MS; Jeong DE; Jang JP; Jang JH; Choi SK
    BMC Microbiol; 2024 Jun; 24(1):226. PubMed ID: 38937695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan from Paenibacillus polymyxa E681 and characterization of its product.
    Park JE; Kim HR; Park SY; Choi SK; Park SH
    J Appl Microbiol; 2017 Nov; 123(5):1133-1147. PubMed ID: 28869797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronicle of a Soil Bacterium:
    Jeong H; Choi SK; Ryu CM; Park SH
    Front Microbiol; 2019; 10():467. PubMed ID: 30930873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing.
    Ma L; Xing J; Li Q; Zhang Z; Xu K
    J Biol Chem; 2022 Jul; 298(7):102103. PubMed ID: 35671823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations.
    Meliawati M; May T; Eckerlin J; Heinrich D; Herold A; Schmid J
    Appl Environ Microbiol; 2022 Jun; 88(11):e0016422. PubMed ID: 35588272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for
    Liu D; Huang C; Guo J; Zhang P; Chen T; Wang Z; Zhao X
    Biotechnol Biofuels; 2019; 12():197. PubMed ID: 31572493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Factory Engineering of Undomesticated
    Jeong DE; Kim MS; Kim HR; Choi SK
    Front Microbiol; 2022; 13():802040. PubMed ID: 35558120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologously expressed SacP23, a novel bacteriocin from
    Khánh CM; Van Quyen D; Van TTH; Moore RJ
    R Soc Open Sci; 2023 Dec; 10(12):231119. PubMed ID: 38126065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete Genome Sequence of Industrial Biocontrol Strain
    Luo Y; Cheng Y; Yi J; Zhang Z; Luo Q; Zhang D; Li Y
    Front Microbiol; 2018; 9():1520. PubMed ID: 30050512
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative genome analysis and mining of secondary metabolites of Paenibacillus polymyxa.
    Wang B; Cheng H; Qian W; Zhao W; Liang C; Liu C; Cui G; Liu H; Zhang L
    Genes Genet Syst; 2020 Aug; 95(3):141-150. PubMed ID: 32611933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in
    Rütering M; Cress BF; Schilling M; Rühmann B; Koffas MAG; Sieber V; Schmid J
    Synth Biol (Oxf); 2017 Jan; 2(1):ysx007. PubMed ID: 32995508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of sporulation histidine kinases of Paenibacillus polymyxa.
    Park SY; Park SH; Choi SK
    Res Microbiol; 2012 May; 163(4):272-8. PubMed ID: 22391390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Construction of Portable CRISPR-Cpf1-Mediated Genome Editing in
    Hao W; Suo F; Lin Q; Chen Q; Zhou L; Liu Z; Cui W; Zhou Z
    Front Bioeng Biotechnol; 2020; 8():524676. PubMed ID: 32984297
    [No Abstract]   [Full Text] [Related]  

  • 15. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.
    Kim SB; Timmusk S
    PLoS One; 2013; 8(6):e68092. PubMed ID: 23826364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhanced NADH Metabolism Involves Colistin-Induced Killing of Bacillus subtilis and Paenibacillus polymyxa.
    Yu Z; Zhu Y; Fu J; Qiu J; Yin J
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4.
    Soni R; Nanjani S; Keharia H
    Genomics; 2021 Jan; 113(1 Pt 2):861-873. PubMed ID: 33096257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-based reclassification of
    Kwak MJ; Choi SB; Ha SM; Kim EH; Kim BY; Chun J
    Int J Syst Evol Microbiol; 2020 May; 70(5):3134-3138. PubMed ID: 32375953
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.