These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34122791)
1. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO Corby S; Francàs L; Kafizas A; Durrant JR Chem Sci; 2020 Feb; 11(11):2907-2914. PubMed ID: 34122791 [TBL] [Abstract][Full Text] [Related]
2. Impact of oxygen vacancies on TiO Huang X; Gao X; Xue Q; Wang C; Zhang R; Gao Y; Han Z Dalton Trans; 2020 Feb; 49(7):2184-2189. PubMed ID: 31998903 [TBL] [Abstract][Full Text] [Related]
3. Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Corby S; Francàs L; Selim S; Sachs M; Blackman C; Kafizas A; Durrant JR J Am Chem Soc; 2018 Nov; 140(47):16168-16177. PubMed ID: 30383367 [TBL] [Abstract][Full Text] [Related]
4. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993 [TBL] [Abstract][Full Text] [Related]
5. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation. Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279 [TBL] [Abstract][Full Text] [Related]
6. The synergistic effect of surface and bulk O vacancies in a WO Zhao Q; Hao Z; Meng Y; Liu Z Dalton Trans; 2022 Apr; 51(16):6454-6463. PubMed ID: 35389417 [TBL] [Abstract][Full Text] [Related]
7. One-Step Rapid and Scalable Flame Synthesis of Efficient WO Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641 [TBL] [Abstract][Full Text] [Related]
8. Photo-driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting. Sun M; Gao RT; He J; Liu X; Nakajima T; Zhang X; Wang L Angew Chem Int Ed Engl; 2021 Aug; 60(32):17601-17607. PubMed ID: 34018300 [TBL] [Abstract][Full Text] [Related]
9. Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO Selim S; Pastor E; García-Tecedor M; Morris MR; Francàs L; Sachs M; Moss B; Corby S; Mesa CA; Gimenez S; Kafizas A; Bakulin AA; Durrant JR J Am Chem Soc; 2019 Nov; 141(47):18791-18798. PubMed ID: 31663329 [TBL] [Abstract][Full Text] [Related]
10. Defective Fe Wang J; Wang Y; Xv X; Chen Y; Yang X; Zhou J; Li S; Cao F; Qin G Dalton Trans; 2019 Aug; 48(31):11934-11940. PubMed ID: 31317142 [TBL] [Abstract][Full Text] [Related]
11. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation. Zhu C; Li C; Zheng M; Delaunay JJ ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020 [TBL] [Abstract][Full Text] [Related]
12. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Zheng G; Wang J; Liu H; Murugadoss V; Zu G; Che H; Lai C; Li H; Ding T; Gao Q; Guo Z Nanoscale; 2019 Oct; 11(41):18968-18994. PubMed ID: 31361294 [TBL] [Abstract][Full Text] [Related]
13. Insight into the Kinetic Influence of Oxygen Vacancies on the WO Yang M; He H; Du J; Peng H; Ke G; Zhou Y J Phys Chem Lett; 2019 Oct; 10(20):6159-6165. PubMed ID: 31552737 [TBL] [Abstract][Full Text] [Related]
14. WO Selim S; Francàs L; García-Tecedor M; Corby S; Blackman C; Gimenez S; Durrant JR; Kafizas A Chem Sci; 2019 Mar; 10(9):2643-2652. PubMed ID: 30996980 [TBL] [Abstract][Full Text] [Related]
15. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025 [TBL] [Abstract][Full Text] [Related]
16. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting. Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862 [TBL] [Abstract][Full Text] [Related]
17. Nanostructured core-shell metal borides-oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation. Lu C; Jothi PR; Thersleff T; Budnyak TM; Rokicinska A; Yubuta K; Dronskowski R; Kuśtrowski P; Fokwa BPT; Slabon A Nanoscale; 2020 Feb; 12(5):3121-3128. PubMed ID: 31965133 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-Deficient Nanofiber WO Zhan F; Liu Y; Wang K; Yang X; Liu M; Qiu X; Li J; Li W ACS Appl Mater Interfaces; 2019 Oct; 11(43):39951-39960. PubMed ID: 31577406 [TBL] [Abstract][Full Text] [Related]
19. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation. Feng S; Wang T; Liu B; Hu C; Li L; Zhao ZJ; Gong J Angew Chem Int Ed Engl; 2020 Jan; 59(5):2044-2048. PubMed ID: 31769570 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-Vacancy-Introduced BaSnO Kim M; Lee B; Ju H; Kim JY; Kim J; Lee SW Adv Mater; 2019 Aug; 31(33):e1903316. PubMed ID: 31243820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]